高考数学大题突破训练文科(5-8)_第1页
高考数学大题突破训练文科(5-8)_第2页
高考数学大题突破训练文科(5-8)_第3页
高考数学大题突破训练文科(5-8)_第4页
高考数学大题突破训练文科(5-8)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学大题突破训练(五)1、已知函数,R。(1)求的值;(2)设,f(3)=,f(3+2)=求sin( )的值2、甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率3、如图,在四面体PABC中,PCAB,PABC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.()求证:DE平面BCP; ()求证:四边形DEFG为矩形;()是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.4、设是公比为正数的等比数列,。 ()求的通项公式; ()设是首项为1,公差为2的等差数列,求数列的前项和。5、设椭圆C: 过点(0,4),离心率为()求C的方程;()求过点(3,0)且斜率为的直线被C所截线段的中点坐标。6、已知函数,()设函数F(x)18f(x)x2h(x)2,求F(x)的单调区间与极值;()设,解关于x的方程;()设,证明:高考数学大题突破训练(六)1、已知等比数列中,公比(I)为的前n项和,证明:(II)设,求数列的通项公式2、本着健康、低碳的生活理念,租自行车骑游的人越来越多某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)有甲、乙人互相独立来该租车点租车骑游(各租一车一次)设甲、乙不超过两小时还车的概率分别为、;两小时以上且不超过三小时还车的概率分别为、;两人租车时间都不会超过四小时()分别求出甲、乙在三小时以上且不超过四小时还车的概率;()求甲、乙两人所付的租车费用之和小于6元的概率3、设函数 (1)求的最小正周期; (II)若函数的图象按平移后得到函数的图象,求在上的最大值。4、如图,在直三棱柱ABCA1B1C1中,BAC=90,AB=AC=AA1=1,延长A1C1至点P,使C1PA1C1,连接AP交棱CC1于D()求证:PB1平面BDA1;()求二面角AA1DB的平面角的余弦值;5、已知函数,其中()当时,求曲线在点处的切线方程;()当时,求的单调区间;()证明:对任意的在区间内均存在零点6、已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为。 若与重合,求的焦点坐标; 若,求的最大值与最小值; 若的最小值为,求的取值范围。高考数学大题突破训练(七)1、在中,内角的对边分别为,已知()求的值;()的值2、已知公差不为0的等差数列的首项为,且,成等比数列()求数列的通项公式;()对,试比较与的大小3、某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中: (I)没有人申请A片区房源的概率; (II)每个片区的房源都有人申请的概率。4、如图,四棱锥中,底面ABCD为平行四边形,底面ABCD(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高5、已知函数(其中常数a,bR),是奇函数.()求的表达式;()讨论的单调性,并求在区间1,2上的最大值和最小值.6、设椭圆的左、右焦点分别为F1,F2。点满足 ()求椭圆的离心率; ()设直线PF2与椭圆相交于A,B两点,若直线PF2与圆相交于M,N两点,且,求椭圆的方程。高考数学大题突破训练(八)1、在ABC中,角A,B,C所对的边分别为a,b,c,设S为ABC的面积,满足S(a2b2c2).()求角C的大小;()求sinAsinB的最大值.2、有编号为,的10个零件,测量其直径(单位:cm),得到下面数据:其中直径在区间1.48,1.52内的零件为一等品。()从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;()从一等品零件中,随机抽取2个. ()用零件的编号列出所有可能的抽取结果; ()求这2个零件直径相等的概率。3、如图,在四棱锥中,底面为平行四边形,为中点,平面, ,为中点()证明:/平面;()证明:平面;()求直线与平面所成角的正切值4、设等差数列满足,。()求的通项公式; ()求的前项和及使得最大的序号的值。5、已知函数f(x)=,其中a0. ()若a=1,求曲线y=f(x)在点(2,f(2)处的切线方程;()若在区间上,f(x)0恒成立,求a的取值范围.6、设,分别是椭圆E:+=1(0b1)的左、右焦点,过的直线与E相交于A、B两点,且,成等差数列。()求()若直线的斜率为1,求b的值。高考数学大题突破训练(五)参考答案1、解:(1); (2)故2、解:(I)甲校两男教师分别用A、B表示,女教师用C表示;乙校男教师用D表示,两女教师分别用E、F表示从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D)(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F)共9种。从中选出两名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F)共4种,选出的两名教师性别相同的概率为 (II)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,从中选出两名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F)共6种,选出的两名教师来自同一学校的概率为3、证明:()因为D,E分别为AP,AC的中点,所以DE/PC。又因为DE平面BCP,所以DE/平面BCP。()因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE/PC/FG,DG/AB/EF。所以四边形DEFG为平行四边形,又因为PCAB,所以DEDG,所以四边形DEFG为矩形。()存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点由()知,DFEG=Q,且QD=QE=QF=QG=EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN。与()同理,可证四边形MENG为矩形,其对角线点为EG的中点Q,且QM=QN=EG,所以Q为满足条件的点.4、解:(I)设q为等比数列的公比,则由,即,解得(舍去),因此所以的通项为 (II) 5、解()将(0,4)代入C的方程得 b=4又 得即, a=5C的方程为()过点且斜率为的直线方程为,设直线与的交点为,将直线方程代入的方程,得,即,解得, AB的中点坐标,即中点为。6、解:(),令,得(舍去)当时;当时,故当时,为增函数;当时,为减函数为的极大值点,且()方法一:原方程可化为,即为,且当时,则,即,此时,此时方程仅有一解当时,由,得,若,则,方程有两解;若时,则,方程有一解;若或,原方程无解方法二:原方程可化为,即,当时,原方程有一解;当时,原方程有二解;当时,原方程有一解;当或时,原方程无解()由已知得,设数列的前n项和为,且()从而有,当时,又即对任意时,有,又因为,所以则,故原不等式成立高考数学大题突破训练(六)参考答案1、()因为所以()所以的通项公式为2、解:()分别记甲、乙在三小时以上且不超过四小时还车为事件A、B,则,答:甲、乙在三小时以上且不超过四小时还车的概率分别为、()记甲、乙两人所付的租车费用之和小于6元为事件C,则答:甲、乙两人所付的租车费用之和小于6元的概率为3、解:(I)故的最小正周期为 (II)依题意当为增函数,所以上的最大值为4、()连结AB1与BA1交于点O,连结OD,C1D平面AA1,A1C1AP,AD=PD,又AO=B1O,ODPB1,又OD面BDA1,PB1面BDA1,PB1平面BDA1()过A作AEDA1于点E,连结BEBACA,BAAA1,且AA1AC=A,BA平面AA1C1C由三垂线定理可知BEDA1BEA为二面角AA1DB的平面角在RtA1C1D中,又,在RtBAE中,故二面角AA1DB的平面角的余弦值为5、()解:当时,所以曲线在点处的切线方程为 ()解:,令,解得因为,以下分两种情况讨论: (1)若变化时,的变化情况如下表:+-+所以,的单调递增区间是的单调递减区间是。 (2)若,当变化时,的变化情况如下表:+-+所以,的单调递增区间是的单调递减区间是 ()证明:由()可知,当时,在内的单调递减,在内单调递增,以下分两种情况讨论: (1)当时,在(0,1)内单调递减,所以对任意在区间(0,1)内均存在零点。 (2)当时,在内单调递减,在内单调递增,若所以内存在零点。若所以内存在零点。所以,对任意在区间(0,1)内均存在零点。综上,对任意在区间(0,1)内均存在零点。6、解: ,椭圆方程为, 左、右焦点坐标为。 ,椭圆方程为,设,则 时; 时。 设动点,则 当时,取最小值,且, 且解得。高考数学大题突破训练(七)参考答案1、()解:由所以 ()解:因为,所以所以2、()解:设等差数列的公差为,由题意可知即,从而因为故通项公式 ()解:记所以从而,当时,;当3、解:这是等可能性事件的概率计算问题。 (I)解法一:所有可能的申请方式有34种,而“没有人申请A片区房源”的申请方式有24种。记“没有人申请A片区房源”为事件A,则解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验.记“申请A片区房源”为事件A,则由独立重复试验中事件A恰发生k次的概率计算公式知,没有人申请A片区房源的概率为 (II)所有可能的申请方式有34种,而“每个片区的房源都有人申请”的申请方式有种.记“每个片区的房源都有人申请”为事件B,从而有4、()因为, 由余弦定理得 从而BD2+AD2= AB2,故BDAD又PD底面ABCD,可得BDPD所以BD平面PAD. 故 PABD()如图,作DEPB,垂足为E。已知PD底面ABCD,则PDBC。由()知BDAD,又BC/AD,所以BCBD。故BC平面PBD,BCDE。则DE平面PBC。由题设知,PD=1,则BD=,PB=2,根据BEPB=PDBD,得DE=,即棱锥DPBC的高为5、解:()由题意得因此是奇函数,所以有从而 ()由()知,上是减函数;当从而在区间上是增函数。由前面讨论知,而因此,最小值为6、()解:设,因为,所以,整理得(舍)或 ()解:由()知,可得椭圆方程为,直线FF2的方程为A,B两点的坐标满足方程组消去并整理,得。解得,得方程组的解不妨设,所以于是圆心到直线PF2的距离因为,所以整理得,得(舍),或所以椭圆方程为高考数学大题突破训练(八)参考答案1、()解:由题意可知absinC=,2abcosC. 所以tanC=. 因为0C, 所以C=.()解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)=sinA+A+sinA=sin(A+).当ABC为正三角形时取等号,所以sinA+sinB的最大值是.2、()解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)=. ()(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,共有15种. (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种. 所以P(B)=.3、()证明:连接BD,MO,在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB/MO。因为平面ACM,平面ACM,所以PB/平面ACM。 ()证明:因为,且AD=AC=1,所以,即,又PO平面ABCD,平面ABCD,所以,所以平面PAC。 ()解:取DO中点N,连接MN,AN,因为M为PD的中点,所以MN/PO,且平面ABCD,得平面ABCD,所以是直线AM与平面ABCD所成的角,在中,所以,从而,在,即直线AM与平面ABCD所成角的正切值为4、(1)由am = a1 +(n-1)d及a1=5,aw=-9得 解得数列am的通项公式为an=11-2n。 (2)由(1) 知Sm=na1+d=10n-n2。 因为Sm=-(n-5)2+25. 所以n=5时,Sm取得最大值。5、()解:当a=1时,f(x)=,f(2)=3;f(x)=, f(2)=6.所以曲线y=f(x)在点(2,f(2)处的切线方程为y-3=6(x-2),即y=6x-9.()解:f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论