




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2 1 函数奇偶性的概念 1 偶函数的定义如果对于函数f x 的定义域内的一个x 都有 那么称函数y f x 是偶函数 2 奇函数的定义如果对于函数f x 的定义域内的一个x 都有 那么称函数y f x 是奇函数 任意 f x f x 任意 f x f x 一 复习旧知 3 2 奇 偶函数的图象 1 偶函数的图象关于对称 2 奇函数的图象关于对称 3 函数奇偶性与单调性 最值 之间的关系 1 若奇函数f x 在 a b 上是增函数 且有最大值M 则f x 在 b a 上是 且有 2 若偶函数f x 在 0 上是减函数 则f x 在 0 上是 y轴 原点 最小值 M 增函数 增函数 4 1 奇函数的图象一定过原点吗 提示 不一定 若0在定义域内 则图象一定过原点 否则不过原点 2 由奇 偶 函数图象的对称性 在作函数图象时你能想到什么简便方法 提示 若函数具有奇偶性 作函数图象时可以先画出x 0部分 再根据奇偶函数图象的对称性画出另一部分图象 二 思考 5 例3 若f x 是定义在R上的奇函数 当x 0时 f x x 1 x 求函数f x 的解析式 思路点拨 由题目可获取以下主要信息 函数f x 是R上的奇函数 x 0时f x 的解析式已知 解答本题可将x0上求解 6 7 此类问题的一般做法是 求谁设谁 即在哪个区间求解析式 x就设在哪个区间内 要利用已知区间的解析式进行代入 利用f x 的奇偶性写出 f x 或f x 从而解出f x 思考 若将题设中的 f x 是奇函数 改为 f x 是偶函数 且f 0 0 其他条件不变 则函数f x 的解析式是什么 8 9 例4 已知奇函数f x 是定义在 1 1 上的增函数 且f x 1 f 1 2x 0 求实数x的取值范围 思路点拨 f x 1 f 1 2x 0 f x 1 f 2x 1 根据单调性列不等式组 解得实数x的取值范围 10 11 解决此类问题时一定要充分利用已知的条件 把已知不等式转化成f x1 f x2 或f x1 f x2 的形式 再根据奇函数在对称区间上单调性一致 偶函数的单调性相反 列出不等式或不等式组 同时不能漏掉函数自身定义域对参数的影响 例5 若偶函数f x 的定义域为 1 1 且在 0 1 上单调递减 若f 1 m f m 成立 求m的取值范围 12 13 四 课堂小结 1 例1例2题型根据奇偶函数的图象性质 知道一个区间的图象可以画出另外一个区间的图象解答 2 求关于奇偶函数的解析式一般做法 求谁设谁 即在哪个区间求解析式 x就设在哪个区间内 要利用已知区间的解析式进行代入 利用f x 的奇偶性写出 f x 或f x 从而解出f x 3 奇偶性与单调性结合的题目 充分利用已知的条件 把已知不等式转化成f x1 f x2 或f x1 f x2 的形式 再根据奇函数在对称区间上单调性一致 偶函数的单调性相反 列出不等式或不等式组 同时不能漏掉函数自身定义域对参数的影响 14 练习1 已知函数f x x R 是奇函数 且当x 0时 f x 2x 3 求函数f x 的解析式 五 课堂练习 15 16 练习2 已知函数f x 对一切实数x y都有f x y f x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初三质量分析会班主任发言
- 电话销售礼仪培训
- 时政播报课件
- 2025版锅炉改造工程设计与施工合同
- 二零二五年瓷砖产品进出口贸易合同
- 2025版电商数据分析与营销托管合同范本
- 二零二五版家庭心理咨询与辅导服务合同书
- 2025版股权投资与资产管理合作协议书
- 二零二五版跨境贸易实务:磋商与订立合同操作指南及案例解析
- 2025版智能家电研发与市场推广合作合同
- 2025-2030全球水飞蓟素原料药行业调研及趋势分析报告
- 2025年江苏无锡宜兴市高塍镇招聘专职网格员36人历年高频重点提升(共500题)附带答案详解
- GB/T 44947-2024机器状态监测与诊断性能诊断方法
- 2025年军队文职考试《公共科目》试题与参考答案
- 【英语】人教版英语七年级英语下册完形填空
- 福州市公安局招聘警务辅助人员笔试真题2023
- 激励与奖惩机制
- 2024年考研英语核心词汇
- 术中获得性压力性损伤预防专家共识2023
- 劳务分包补充协议书
- 天津市和平区2024-2025学年八年级上学期11月期中道德与法治试题
评论
0/150
提交评论