



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 因式分解章末复习主备人 :李庆银 审查人 :季永健 使用人:【知识与技能】掌握提公因式法、公式法、十字相乘法、分组分解法,及在实数范围内分解因式的运用,培养学生简便运算和应用因式分解解决数学问题的能力.【过程与方法】通过寻求乘法公式与因式分解的关系,理解因式分解的含义.【情感态度】通过因式分解的学习,体会整体数学思想和转化的数学思想.【教学重点】熟练运用各种方法来进行因式分解.【教学难点】因式分解各种方法的综合运用,利用因式分解解决数学问题.一.知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系二、释疑解惑,加深理解1.因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.2.提公因式法如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法3.公式法(1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.(2)完全平方公式:a22ab+b2=(ab)2.其中,a22ab+b2叫做完全平方式.【教学说明】 (1)因式分解与整式乘法是相反方向的变形,即互逆的运算; (2)因式分解是恒等变形,因此可以用整式乘法来检验.三、典例精析,复习新知1.下列变形是否是因式分解?为什么,(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.【解析】(1)不是因式分解,提公因式错误,可以用整式乘法检验其正确性.(2)不是因式分解,不满足因式分解的含义;(3)不是因式分解,因为因式分解是恒等变形而本题不恒等;(4)不是因式分解,是整式乘法.2.下列变形是否正确?为什么?(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.【解析】(1)不正确,目前在有理数范围内不能再分解.(2)不正确,4x2-6xy+9y2不是完全平方式,不能进行分解.(3)不正确,x2-2x-1不是完全平方式,不能用完全平方公式进行分解,而且在有理数范围内也不能分解.3.用提公因式法将下列各式因式分解.(1)ax-ay; (2)6xyz-3xz2;(3)-x3z+x4y; (4)36aby-12abx+6ab;(5)3x(a-b)+2y(b-a); (6)x(m-x)(m-y)-m(x-m)(y-m).【解析】(1)(4)题直接提取公因式分解即可,(5)题和(6)题首先要适当的变形,其中(5)题把b-a化成-(a-b)的,(6)题把(x-m)(y-m)化成(m-x)(m-y),然后再提取公因式.解:(1)ax-ay=a(x-y); (2)6xyz-3xz2=3xz(2y-z);(3)-x3z+x4y=x3(-z+xy); (4)36aby-12abx+6ab=6ab(6y-2x+1);(5)3x(a-b)+2y(b-a)=3x(a-b)-2y(a-b)=(a-b)(3x-2y);(6)x(m-x)(m-y)-m(x-m)(y-m)=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-x)2(m-y).4.用公式法分解因式.(1)m2+2m+1;(2)9x2-12x+4;(3)1-10x+25x2;(4)(m+n)2-6(m+n)+9;(5)4x2-9.解:(1) m2+2m+1=(m+1)2; (2) 9x2-12x+4=(3x-2)2;(3) 1-10x+25x2=(1-5x)2;(4) (m+n)2-6(m+n)+9=(m+n-3)2;(5) 4x2-9=(2x)2-32=(2x+3)(2x-3).5.分解因式.(1)x3-2x2+x;(2)(a+b)2-4a2;(3)x4-81x2y2; (4)x2(x-y)+y2(y-x);(5)(a+b+c)2-(a-b-c)2.解:(1)x3-2x2+x=x(x2-2x+1)=x(x-1)2;(2)(a+b)2-4a2=(a+b+2a)(a+b-2a)=(3a+b)(b-a);(3)x4-81x2y2=x2(x2-81y2)=x2(x+9y)(x-9y);(4)x2(x-y)+y2(y-x)=x2(x-y)-y2(x-y)=(x-y)(x2-y2)=(x-y)(x+y)(x-y)=(x+y)(x-y)2;(5)( a+b+c)2-(a-b-c)2=(a+b+c)+(a-b-c)(a+b+c)-(a-b-c)=2a(2b+2c)=4a(b+c).【教学说明】基础习题的练习,增强学生对于上面知识点的理解,也有利于学生发现自己的学习漏洞,及时弥补,同时也为本节课做了一个很好的知识铺垫.四、复习训练,巩固提高1.若9x2+kxy+36y2是完全平方式,则k=_.分析: 完全平方式是形如:a22ab+b2即两数的平方和与这两个数乘积的2倍的和(或差).解析:9x2+kxy+36y2=(3x)2+kxy+(6y)2,kxy=23x6y=36xy. k=36.2.利用因式分解计算下列各题.(1)7.6199.9+4.3199.9-1.9199.9;(2)20022-40062002+20032;(3)565211-435211;(4)(5)2-(2)2.解:(1)原式=1999;(2)原式=1;(3)原式=1430000; (4)原式=28.3. 计算4.解方程组 分析:本题是一个二元二次方程组,就目前的知识水平来说,用代入消元法或加减消元法来解是困难的.但是我们发现这个方程组有一个特点是方程x2-4y2=5可以通过因式分解为(x+2y)(x-2y)=5,再把x-2y=1代入方程(x+2y)(x-2y)=5中,即可得到x+2y=5由此原方程组就可以化成一个二元一次方程组而解出.解:由得(x+2y)(x-2y)=5,把代入中得x+2y=5,原方程组化为+得2x=6,x=3.-得4y=4,y=1.原方程组的解为 5.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.解:x3y-2x2y2+xy3=xy(x2-2xy+y2)=xy(x-y)2.当x-y=1,xy=2时,原式=212=2.6.已知x-y=2,x2-y2=6,求x与y的值.解:x2-y2=6,(x+y)(x-y)=6.又x-y=2,x+y=3.7.求证:四个连续自然数的积再加上1,一定是一个完全平方数.证明:设这四个连续自然数依次为n,n+1,n+2,n+3,则n(n+1)(n+2)(n+3)+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2n(n+1)(n+2)(n+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业互联网平台网络切片技术在历史科研机构的创新应用报告
- 2025年新能源汽车电池租赁市场环保效益评估报告
- 2025年矿山无人作业技术智能机器人研发与产业化报告
- 2025年快消品包装行业可持续发展与消费者环保意识提升报告
- 玉米免耕种植合同范本
- 音乐机构签约合同范本
- 矿山抵押贷款合同范本
- 矿山渗漏维修合同范本
- 门面转让合同范本模板
- 维修车辆砌墙合同范本
- 【独立储能】山西省独立储能政策及收益分析-中国能建
- 汽车焊装工(技师)理论考试复习题库500题(含各题型)
- 2024注册安全工程师《安全生产法律法规》考点总结
- 四年级(上册)生命生态安全教案及教学计划附安全知识川教版(人教版)
- 民用建筑供暖通风与空气调节设计规范-条文解释
- ICU抗凝药物合理应用
- 2024年院感安全注射培训
- 人工智能助力企业创新发展
- 微生物实验室病原微生物评估报告
- 穴位埋线疗法在代谢性疾病中的应用及效果评估
- 学校各功能室使用情况登记表
评论
0/150
提交评论