人教版七年级数学上册教案全集.doc_第1页
人教版七年级数学上册教案全集.doc_第2页
人教版七年级数学上册教案全集.doc_第3页
人教版七年级数学上册教案全集.doc_第4页
人教版七年级数学上册教案全集.doc_第5页
已阅读5页,还剩98页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教案第一章有理数1.1正数和负数第1课时正数和负数教学目标:1.了解正数与负数是实际生活的需要.2.会判断一个数是正数还是负数. 新|课 |标|第 |一| 网3.会用正负数表示互为相反意义的量.教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.教学难点:负数的引入.教与学互动设计:(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究举出一些生活中常遇到的具有相反意义的量,如温度是零上7 和零下5 ,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁移,巩固提高【例1】举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么-0.03 g表示什么?【例3】 某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元)+16+5.0-1.2-2.1-0.9+10-2.6(1)本周小张一共用掉了多少钱?存进了多少钱?(2)储蓄罐中的钱与原来相比是多了还是少了?(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.(五)课堂跟踪反馈夯实基础1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4年,那么8年前记作年.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3 kg,记作+3 kg;小阳体重减少了2 kg,则小阳增加了 .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.(六)课时小结1.与以前相比,0的意义又多了哪些内容?2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)第2课时正数和负数的应用教学目标:1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.教学重点:深化对正负数概念的理解.教学难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回顾和理解 通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.参考例子:用正数、负数和零表示零上温度、零下温度和零度.思考“0”在实际问题中有什么意义?归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.如:水位不升不降时的水位变化,记作:0 m.问题2:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?(二)深化理解,解决问题问题3:(课本P3例题)【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.巩固练习1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.2.让学生再举出一些常见的具有相反意义的量.3.19901995年下列国家年平均森林面积(单位:千米2)的变化情况是:中国减少866,印度增长72,韩国减少130,新西兰增长434,泰国减少3247, 孟加拉减少88.(1)用正数和负数表示这六国19901995年平均森林面积的增长量;(2)如何表示森林面积减少量,所得结果与增长量有什么关系?(3)哪个国家森林面积减少最多?(4)通过对这些数据的分析,你想到了什么?阅读与思考(课本P6)用正数和负数表示加工允许误差.问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格? 2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.(三)应用迁移,巩固提高1.甲冷库的温度是-12,乙冷库的温度比甲冷库低5 ,则乙冷库的温度是.2.一种零件的内径尺寸在图纸上是90.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:星期一二三四增减-5+7-3+4根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?类比例题,要求学生注意书写格式,体会正负数的应用.(四)课时小结(师生共同完成)1.2有理数第1课时有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究 3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数数的集合把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高【例1】 把下列各数填入相应的集合内:,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89 【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?有理数有理数(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?(五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内:-7,0.125, ,-3 ,3,0,50%,-0.3(1)整数集合;(2)分数集合;(3)负分数集合 ;(4)非负数集合 ;(5)有理数集合 .2.下列说法中正确的是()A.整数就是自然数B. 0不是自然数C.正数和负数统称为有理数D. 0是整数,而不是正数提升能力3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?第2课时数轴教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容数轴.【点拨】(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.(三)应用迁移,巩固提高【例1】 下列所画数轴对不对?如果不对,指出错在哪里?【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.【例3】下列语句:数轴上的点只能表示整数;数轴是一条直线;数轴上的一个点只能表示一个数;数轴上找不到既不表示正数,又不表示负数的点;数轴上的点所表示的数都是有理数.正确的说法有()A.1个 B.2个C.3个D.4个 【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有() A.1998个或1999个B.1999个或2000个C.2000个或2001个D.2001个或2002个(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.(五)课堂跟踪反馈夯实基础1.规定了 、 、 的直线叫做数轴,所有的有理数都可从用 上的点来表示.2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()A.7 B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.提升能力6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3.开放探究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.下列四个数中,在-2到0之间的数是()A.-1B.1 C.-3D.3第3课时相反数教学目标:1.借助数轴了解相反数的概念,知道互为相反数的位置关系.2.给一个数,能求出它的相反数.教学重点:理解相反数的意义.教学难点:理解和掌握双重符号简化的规律.教与学互动设计:(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出. 想一想(1)上述各对数有什么特点?(2)表示这四对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的n组数吗?观察像这样只有符号不同的两个数叫相反数.互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.(三)应用迁移,巩固提高【例1】填空(1)-5.8是的相反数,的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是,的相反数是它本身.【例2】 下列判断不正确的有()互为相反数的两个数一定不相等;互为相反数的数在数轴上的点一定在原点的两边;所有的有理数都有相反数;相反数是符号相反的两个点.A.1个B.2个C.3个D.4个【例3】 化简下列各符号:(1)-(-2);(2)+-(+5);(3)-(-6)(共n个负号).【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?(四)总结反思,拓展升华【归纳】 (1)相反数的概念及表示方法.(2)相反数的代数意义和几何意义.(3)符号的化简.(五)课堂跟踪反馈夯实基础1.判断题(1)-3是相反数.()(2)-7和7是相反数.()(3)-a的相反数是a,它们互为相反数.()(4)符号不同的两个数互为相反数.()2.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,33.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或0C.负数 D.负数或04.一个数比它的相反数小,这个数是()A.正数 B.负数C.非负数D.非正数5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是. 提升能力6.若a与a-2互为相反数,则a的相反数是.7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“0,则|a|=a.(2)负数的绝对值是它的相反数.用式子表示是:a0 B.ab,求a、b的值. (四)总结反思,拓展升华通过本节课所学的有理数的大小比较,你能掌握以下两种方法吗?(1)利用数轴,在数轴上把这些数表示出来,然后根据“数轴上左边的数总比右边的数小”来比较.(2)利用比较法则:“正数大于零,负数小于零;两个负数,绝对值大的反而小”来进行.(五)课堂跟踪反馈夯实基础1.填空题(1)绝对值小于3的负整数有,绝对值不小于2且不大于5的非负整数有.(2)用“”、“=”、“-aB.2aaC.a-D.aa(2)m与-5m的大小关系是()A.m-5mB.m0这两个条件的有理数a;(3)将有理数:-(-4),0,-3,-+2,-(+1.5),-(-3),-(+2)表示到数轴上,并用“0,b0,则a+b0;若a0,b0,bb,则a+b0;若a0,b0,且ab,则a+b0.提升能力2.列式计算(1)求3的相反数与-2的绝对值的和;(2)某市一天上午的气温是10,下午上升2,半夜又下降15,则半夜的气温是多少? 3.若a0,且a+b0,试比较a、b、-a、-b的大小,并用“”把它们连接起来.第2课时加法运算律教学目标:1.能运用加法运算律简化加法运算.2.理解加法运算律在加法运算中的作用,适当进行推理训练.教学重点:如何运用加法运算律简化运算.教学难点:灵活运用加法运算律.教与学互动设计:(一)情境创设,导入新课思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.(二)合作交流,解读探究计算:20+(-30)与(-30)+20两次得到的和相同吗?得出结论:20+(-30)=(-30)+20换几组数去试:得到加法交换律:a+b=(学生填).其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)计算:(1)8+(-5)+(-4);(2)8+(-5)+(-4).得出结论:加法结合律:(a+b)+c=.【例1】计算:16+(-25)+24+(-35)【例2】课本P20例3说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:有些加数相加后可以得到整数时,可以先行相加;有相反数可以互相消去,和为0,可以先行相加;有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.(三)应用迁移,巩固提高【例3】 利用有理数的加法运算律计算,使运算简便.(1)(+9)+(-7)+(+10)+(-3)+(-9)(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(3)(+1)+(-2)+(+3)+(-4)+(+2003)+(-2004)【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?(四)总结反思,拓展升华本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.(五)课堂跟踪反馈夯实基础1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是()A.(+6)+(+4)+18+(-18)+(-6.8)+(-3.2)B.(+6)+(-6.8)+(+4)+(-18)+18+(-3.2)C.(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)D.(+6)+(+4)+(-3.2)+(-6.8)+(-18)+18)2.计算:(-2)+4+(-6)+8+(-98)+100. 提升能力3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?第3课时有理数的减法教学目标:1.经历探索有理数减法法则的过程,理解有理数减法法则. 2.会熟练进行有理数减法运算.教学重点:有理数减法法则和运算.教学难点:有理数减法法则的推导.教与学互动设计(一)创设情景,导入新课观察温度计:你能从温度计看出4比-3高出多少度吗? 学生普遍能直观地看出4比-3高7,进一步地假定某地一天的气温是-34,那么温差(最高气温减最低气温,单位)如何用算式表示?按照刚才观察到的结果,可知4-(-3)=7,而4+(+3)=7,由可知:4-(-3)=4+(+3),上述结论的获得应放手让学生回答.(二)动手实践,发现新知观察、探究、讨论:从式能看出减-3相当于加哪个数吗?结论:减去-3等于加上-3的相反数+3.(三)类比探究,总结提高如果将4换成-1,还有类似于上述的结论吗?先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2,又因为(-1)+(+3)=2,由有(-1)-(-3)=-1+(+3),即上述结论依然成立.试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.再试:把减数-3换成正数,结果又如何呢?计算9-8与9+(-8);15-7与15+(-7)从中又能有新发现吗?让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.减法法则:减去一个数,等于加上这个数的相反数.用字母表示:a-b=a+(-b).(在上述实验中,逐步渗透了一种重要的数学思想方法转化)(四)例题分析,运用法则【例】计算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);(4)-3-5.(五)总结巩固,初步应用总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.第4课时有理数加减混合运算教学目标:使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.教学重点:把加减混合运算理解为加法运算.教学难点:把省略括号的和的形式直接按有理数加法法则进行计算.教与学互动设计:(一)创设情境,导入新课竞赛活动比一比,看谁算得快.(-20)+(+3)-(-5)-(+7)(-7)+(+5)+(-4)-(-10)(二)合作交流,解读探究师:对比上式,你首先想到将原式如何变形?生:根据有理数的减法法则把减号统一成加号,即原式变为:-20+(+3)+(+5)+(-7).说明:1.上式表示的是-20,+3,+5,-7的和,为了书写简单,可以省略算式中的括号,从而有-20+3+5-7.大家要注意到,虽然加号和括号都省略了,但-20+3+5-7仍表示-20,+3,+5,-7的和,所以这个算式可以读作“负20,正3,正5,负7的和”.当然,按运算意义也可读作“负20加3加5减7”.学生尝试用两种读法读.同桌间互相提出算式,并读出两种读法.2.刚才在大家练习的过程中,我们看到有两种典型的处理方法,一是将原式按原来顺序计算;二是将原式换成(-20-7)+(+3+5).大家观察比较一下,你看哪种方法更好,为什么?(三)应用迁移,巩固提高【例1】把(+)+(-)-(+)-(-)-(+1)写成省略加号的和的形式,并计算.说明:解题过程由学生口述、教师板演,同时提问每步的根据和目的,并强调书写的规范化.师:纵观这道题的解答过程,你能总结得到什么?小组同学可作交流.学生小组交流,并总结.【总结】有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算;(2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加;(4)按有理数加法法则计算. 【例2】比谁算得对,算得快:(1)(+)+(-)-(+)-(-)-(+1);(2)-7-(-8)-(-7)-(+9)+(-10)+11;(3)-99+100-97+98-95+96+2;(4)-1-2-3-100. 【例3】银行储蓄所办理了8笔业务,取出950元,存进500元,取出800元,存进1200元,存进2500元,取出1025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?(四)总结反思,拓展升华回顾一下本节课所学内容,你学会了什么?(五)课堂跟踪反馈夯实基础1.填空题(1)式子-6-8+10+6-5读作,或读作.(2)把-a+(+b)-(-c)+(-d)写成省略加号的和的形式为.(3)若x-1+y+1=0,则x-y=.2.选择题(1)已知m是6的相反数,n比m的相反数小2,则m+n等于()A.4 B.8C.-10D.-2(2)使等式-5-x=-5+x成立的x是()A.任意一个数B.任意一个正数C.任意一个非正数D.任意一个非负数(3)-a+b-c由交换律可得()A.-b+a-cB.b-a-cC.a-(+c)-bD.-b+a+c提升能力3.计算题.(1)0-(+5)-(-3.6)+(-4)+(-3)-(-7.4);(2)(+3)-(-1)+(-)-(-)-(+4).1.4有理数的乘除法第1课时有理数的乘法教学目标:1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.2.会进行有理数的乘法运算.教学重点:能按有理数乘法法则进行有理数乘法运算.教学难点:含有负因数的乘法.教与学互动设计:(一)创设情境,导入新课1.阅读课本P28思考及提出的问题.2.全班集中交流以上结论,归纳引出有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.问:法则(1)有没有把所有的有理数都包括在内?指出:正数与0相乘得0,这里规定负数与0相乘也得0.所以得法则(2):任何数与0相乘,都得0.3.通过举例,理解法则问题:由法则(1),如何计算(-5)(-3)的结果?(1)师生共同完成:(-5)(-3)同号两数相乘看条件(-5)(-3)=+()同号得正决定符号53=15把绝对值相乘计算绝对值(-5)(-3)=+15(2)分组类似(1)讨论,归纳:(-7)4的运算过程及规律.(3)师生共同完成:有理数的乘法与小学里数的乘法在法则和方法步骤方面分别有什么联系?符号决定以后,有理数的乘法就转化成了小学里数的乘法;由可见,小学里数的乘法是有理数乘法的基础.(二)合作交流,解读探究1.计算:(1)(+)9;(2)(-)(-2).2.练习、板演并相互纠错课本P30练习第1题.3.比较9和(-)(-2)的结果,得出:有理数中乘积是1的两个数互为倒数.指出:因为任何数同0相乘都不等于1,所以0没有倒数.由学生找出练习中哪些题里的两个因数互为倒数,为什么?4.分组讨论:(1)两个互为倒数的数的符号有什么特征?(2)互为倒数的两个数的绝对值有什么关系?(3)如何找一个有理数的倒数?5.课本P30例2分析题意,列算式,计算,写答案.6.练习一种水笔,甲商店每支售价2元,乙商店搞促销,每支只售1.8元.小明在甲商店买这种水笔10支,小华在乙商店也买这种水笔10支.两人所付的钱数哪个少?少多少?(三)应用迁移,巩固提高 1.填空题(1)(-1)(-)=;(2)(+3)(-2)=;(3)0(-4)=;(4)1(-1)=;(5)-3(-2)=.2.用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km,气温的变化量为-6.攀登5km后,气温有什么变化?3.在整数-5,-3,-1,2,4,6中任取三个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?(四)总结反思,拓展升华引导学生从三个方面理解本节课所学内容:1.有理数的乘法法则.2.多个不为0的因数相乘时,积的符号的确定.3.几个相乘的因数中,只要有一个因数为0,积就确定为0.第2课时有理数的乘法运算律教学目标:使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.教学重难点:熟练运用运算律进行计算.教与学互动设计:(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好.那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?做一做(出示胶片)下列题目你能运算吗?(1)234(-5);(2)23(-4)(-5);(3)2(-3)(-4)(-5);(4)(-2)(-3)(-4)(-5);(5)-1302(-2004)0.由此我们可总结得到什么?(二)合作交流,解读探究交流讨论不难得到结论:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.几个数相乘,如果其中有因数为0,积等于0.(三)应用迁移,巩固提高【例1】计算(-3)(-)(-)(-8)(-1).【例2】计算(-1999)(-2000)(-2001)(-2002)2003(-2004)0.导入运算律(1)通过计算:5(-6),(-6)5,比较结果得出5(-6)=(-6)5;(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等;(3)用公式的形式表示为:ab=b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论