已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4 1正弦 1 新建中学何晓华 1 在纸上画有一个角为30 的直角三角形 思考30 角的对边与斜边的比值有什么规律 结论 30 角的对边斜边的比值是 0 5 在直角三角形 ABC中 C 90 如果 A 30 BC 3那么AB 6 斜边AB 10那么BC 5 每位同学画一个直角三角形 其中一个锐角为65 量出65 角的对边长度和斜边长度 计算 的值 结论 在有一个锐角为65 的所有直角三角形中 65 角的对边与斜边的比值是一个常数 它约等于0 91 做一做 猜想 若把65 角换成任意的一个锐角 那这个角的对边与斜边的比值也是一个常数吗 已知 任意两个直角三角形 ABC和 DEF A D C F 90 求证 C F 90 A D ABC DEF 于是AB EF BC DE D 猜想得到了证实 在有一个锐角等于 的所有直角三角形中 角 的对边与斜边的比值为一个 常数 预备知识 斜边c A的对边 BC a A的邻边 AC b A的对边a A的邻边b 斜边c B的对边 AC b B的对边b B的邻边 BC a B的邻边a C 直角 的对边 AB c 在直角三角形中 锐角 的对边与斜边的比叫做角 的正弦 记作 即 sinA sinB 如图 在Rt ABC中 C 90 AB c AC b BC a 则 理解概念 注意 1 是一个完整的符号 不要误解为sin 今后所学的其他的三角函数符号也是这样 2 的值与Rt ABC的三边的大小无关 只与锐角的大小有关 如果锐角的大小固定 则这个比值固定 不同的锐角对应不同的比值 正弦符号表示法 求 A的正弦 求 B的正弦 例题 2 B的对边是AC 由勾股定理 得 16AC 4 解 1 A的对边BC 3 斜边 5 例2 在直角三角形ABC中 C 90 BC 5 AC 12 1 求 A的正弦 求 B的正弦 12 解 1 A的对边BC 5 AC 12 由勾股定理 得AB 13 2 1 在直角三角形ABC中 C 90 BC 6 AB 10 求的值 求的值 练习 练习 2 在直角三角形ABC中 若三边长都扩大二倍 则锐角A的正弦值 A 扩大2倍B 不变C 缩小2倍D 无法确定 3 在平面直角体系第一象限内有一点P 3 4 连接0P 求OP与X轴正方向所夹锐角 的正弦值 B 知识拓展 小刚说 对于任意锐角 都有 0 1 你认为他说得对吗 为什么 2 在直角三角形中 锐角 的对边与斜边的比叫做角 的正弦 记作 即 课堂小结 2 的值与Rt ABC的三边的大小无关 只与锐角的大小有关 如果锐角的大小固定 则这个比值固定 不同的锐角对应不同的比值 注意 1 是一个完整的符号 不要误解为sin 今后所学的其他的三角函数符号也是这样 1 在有一个锐角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论