




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成才之路 数学 路漫漫其修远兮吾将上下而求索 北师大版 选修2 1 圆锥曲线与方程 第三章 3 4曲线与方程第1课时曲线与方程 圆锥曲线的共同特征 第三章 一般地 在平面直角坐标系中 如果某曲线c 看作满足某种条件的点的集合或轨迹 上的点与一个二元方程的实数解建立了如下的关系 1 2 那么 这条曲线叫作 这个方程叫作 曲线上点的坐标都是这个方程的解 以这个方程的解为坐标的点都在曲线上 方程的曲线 曲线的方程 1 圆锥曲线的共同特征圆锥曲线上的点到一个定点的距离与它到一条定直线的距离之比为定值e 当 时 圆锥曲线是椭圆 当 时 圆锥曲线是双曲线 当 时 圆锥曲线是抛物线 2 圆锥曲线的统一定义平面内与一个定点f和一条定直线l l不过f 的距离的比等于常数e的点的集合叫作圆锥曲线 这个定点f叫作圆锥曲线的焦点 这条定直线l叫作圆锥曲线的准线 常数e叫作圆锥曲线的离心率 0 e 1 e 1 e 1 1 平面直角坐标系的选取原则 1 以已知定点为原点 2 以已知定直线为坐标轴 x轴或y轴 3 以已知线段所在直线为坐标轴 x轴或y轴 以已知线段的中点为原点 4 以已知互相垂直的两定直线为坐标轴 5 如果曲线 或轨迹 有对称中心 通常以对称中心为原点 6 如果曲线 或轨迹 有对称轴 通常以对称轴为坐标轴 x轴或y轴 7 尽可能使曲线上的关键点在坐标轴上 或者让尽量多的点在坐标轴上 2 对求曲线方程的五个步骤的四点说明 1 在第一步中 如果原题中没有确定坐标系 首先要建立适当的坐标系 坐标系建立得当 可使运算过程简单 所得的方程也较简单 2 第二步是求方程的重要一环 要仔细分析曲线的特征 注意揭示隐含条件 抓住与曲线上任意一点m有关的等量关系 列出几何等式 此步骤也可以省略 而直接将几何条件用动点的坐标表示 3 在化简的过程中 注意运算的合理性与准确性 尽量避免 失解 或 增解 4 第五步的说明可以省略不写 如有特殊情况 可以适当说明 如某些点虽然其坐标满足方程 但不在曲线上 可以通过限定方程中x 或y 的取值范围予以剔除 3 对求曲线方程的三点说明 1 求曲线方程时 由于建系的方法不同 求得的方程也不同 2 一般地 求哪个点的运动轨迹方程 就设哪个点的坐标是 x y 而不设成 x0 y0 或 x1 y1 3 化简方程时 一般将方程f x y 0化成关于x y的整式形式 并且要保证化简过程的恒等性 4 通过方程研究曲线性质的方法借助于曲线方程研究曲线的性质时 首先应把方程通过配方 因式分解 分离变量等方法化为我们熟悉的形式 然后结合图形 研究其性质 5 过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数 当椭圆的焦点落在y轴上时 焦半径公式为 pf1 a ey1 pf2 a ey1 6 如果遇到有动点到两定点距离的问题 应自然联想到椭圆 双曲线的定义 3 下列四个图形中 图形下面的方程是图形中曲线的方程的是 答案 d 4 已知方程y a x 和y x a a 0 所确定的两条曲线有两个交点 则a的取值范围是 a a 1b 0 a 1c 0 a 1或a 1d a 答案 a5 动点p到点f 2 0 的距离与它到直线x 2 0的距离相等 则点p的轨迹方程为 答案 y2 8x 解析 本题考查了抛物线的定义及p的几何意义 由抛物线的定义知p 4 方程为 y2 8x 如果曲线l上的点的坐标满足方程f x y 0 则以下说法正确的是 a 曲线l的方程是f x y 0b 方程f x y 0的曲线是lc 坐标不满足方程f x y 0的点不在曲线l上d 坐标满足方程f x y 0的点在曲线l上 答案 c 分析 从 曲线的方程 和 方程的曲线 两方面判断 曲线与方程的概念 解析 直接法 原说法写成命题形式即 若点m x y 是曲线l上的点 则m点的坐标适合方程f x y 0 其逆否命题即 若m点的坐标不适合方程f x y 0 则m点不在曲线l上 此即说法c 特值方法 作如图所示的曲线l 考查l与方程f x y x2 1 0的关系 显然a b d中的说法全不正确 选c 总结反思 本例给出了判定方程和曲线对应关系的两种方法 等价转换和特值方法 其中特值方法应引起重视 它的使用依据即 方程的曲线上的点的纯粹性和完备性 简言之 即 多一点不行 少一点不可 判断下列结论的正误 并说明理由 1 过点a 3 0 且垂直于x轴的直线的方程为x 0 2 到x轴距离为2的点的直线方程为y 2 3 到两坐标轴的距离的乘积等于1的点的轨迹方程为xy 1 4 abc的顶点a 0 3 b 1 0 c 1 0 d为bc中点 则中线ad的方程为x 0 解析 1 过点a 3 0 且垂直于x轴的直线方程为x 3 结论错误 2 因到x轴距离为2的点的直线方程还有一个y 2 即不具备完备性 结论错误 3 到两坐标轴的距离的乘积等于1的点的轨迹方程应为 x y 1 即xy 1 所给问题不具备完备性 结论错误 4 中线ad是一条线段 而不是直线 应为x 0 3 y 0 所给问题不具备纯粹性 结论错误 已知rt abc ab 2a a 0 求直角顶点c满足的方程 解析 以ab所在直线为x轴 ab中点为坐标原点 建立如图所示的直角坐标系 则有a a 0 b a 0 设顶点c x y 求曲线的方程 总结反思 坐标系的选取 一般将定点或定直线选在坐标轴上 原点有时选在定点处较为方便 有时也要考虑 对称 性 如此例 过点p 2 4 作两条互相垂直的直线l1 l2 若l1交x轴于a点 l2交y轴于b点 求线段ab的中点m的轨迹方程 直译法求曲线的方程 分析 设动点坐标 寻求几何条件 将几何条件坐标化 解析法 求轨迹方程 总结反思 求曲线方程的基本方法是 建系设点 列等式 代换 化简 证明 五步法 在解题时 根据题意 正确列出方程是关键 还要注意最后一步 如果有不符合题意的特殊点要加以说明 一般情况下 求出曲线方程后的证明可以省去 已知圆c1 x 3 2 y2 1和圆c2 x 3 2 y2 9 动圆m同时与圆c1与圆c2相外切 求动圆圆心m的轨迹方程 定义法求曲线方程 总结反思 1 本题是用定义法求动点的轨迹方程 当判断出动点的轨迹是双曲线的一支 且可求出a b时 直接根据定义写出其标准方程 而无需用距离公式写出方程 再通过复杂的运算进行化简 2 由于动点m到两定点c2 c1的距离的差为常数 而不是差的绝对值为常数 因此 其轨迹只能是双曲线的一支 这一点要特别注意 已知动圆m与圆c1 x 4 2 y2 2外切 与圆c2 x 4 2 y2 2内切 求动圆圆心m的轨迹方程 设圆c x 1 2 y2 1 过原点o作圆的任意弦 求所作弦的中点的轨迹方程 参数法求曲线方程 过抛物线y2 2px p 0 的顶点o作两条互相垂直的弦oa ob 再以oa ob为邻边作矩形aobm 求点m的轨迹方程 等腰三角形的顶点是a 4 2 底边的一个端点是b 3 5 求另一端点c的轨迹方程 并说明它的轨迹是什么 迷津点拨 上述求得的轨迹方程忽视了a b c不共线这个隐含条件 因为a b c为三角形的顶点 所以a b c三点不共线 即b c不能重合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京医院建筑方案设计(3篇)
- 2025年学历类自考专业(小学教育)中小学教育管理-教育原理参考题库含答案解析(5套)
- 2025年学历类自考专业(学前教育)幼儿园组织与管理-学前教育研究方法参考题库含答案解析(5套)
- 月嫂培训知识课程班课件
- 2026届天津市四合庄中学高三化学第一学期期末达标测试试题含解析
- 2025年学历类自考专业(学前教育)学前教育行政与管理-幼儿园组织与管理参考题库含答案解析(5套)
- 2025年新回校签就业协议书
- (2025年标准)违建拆除协议书
- 月嫂培训知识内容课件
- 2025年学历类自考专业(学前教育)学前教育史-学前儿童美术教育参考题库含答案解析(5套)
- 突发事故遗体处置应急预案
- 成都第四十九中学英语新初一分班试卷
- 减速器传动装置总体设计方案
- 锂离子电池课件
- 高等代数(上)期末复习题
- 应急资源调查表
- 全初中化学:常考化学方程式及实验现象全总结
- 北师大版八年级上册数学第二章实数单元测试卷(含答案)
- 中西方音乐审美特征比较通识
- 同步控制器说明书
- 05G514-3 12m实腹式钢吊车梁(中级工作制 A4 A5 Q345钢)
评论
0/150
提交评论