




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 3圆心角 1 过点o作弦ab的垂线 垂足为m a b 顶点在圆心的角 叫圆心角 如 所对的弦为ab 图1 om是唯一的 则垂线段om的长度 即圆心到弦的距离 叫弦心距 图1中 om为ab弦的弦心距 1 判别下列各图中的角是不是圆心角 并说明理由 2 下列图中弦心距做对了的是 由上分析 任意给圆心角 对应出现四个量 圆心角 弧 弦弦心距 猜想 图2 圆的旋转不变性 圆绕圆心旋转任意角 都能够与原来的圆重合 注 180o旋转 说明圆是以圆心为对称中心的中心对称图形 图3 1 射线ob与射线ob 重合吗 为什么 2 点a与a 点b与b 重合吗 为什么 4 om与om 呢 为什么 图4 如图 o和 o 是等圆 如果 aob a o b 那么ab a b ab a b om o m 为什么 圆心角定理 在同圆或等圆中 相等的圆心角所对的弧相等 所对的弦相等 所对的弦的弦心距相等 又根据弦心距的唯一性 得om om 图5 另外 对于等圆的情况 因为两个等圆可叠合成同圆 所以等圆问题可转化为同圆问题 命题成立 条件 结论 在同圆或等圆中如果圆心角相等 那么 圆心角所对的弧相等 圆心角所对的弦相等 圆心角所对的弦的弦心距相等 推论 圆心角定理的逆定理 在同圆或等圆中 如果两个圆心角 两条弧 两条弦或两条弦的弦心距中有一组量相等 那么它们所对应的其余的各组量都分别相等 例1如图 已知点o是 epf的平分线上一点 p点在圆外 以o为圆心的圆与 epf的两边分别相交于a b和c d 求证 ab cd 分析 联想到 角平分线的性质 作弦心距om on 证明 作 垂足分别为m n p a b e c d f 要证ab cd 只需证om on o 如图 p点在圆上 pb pd吗 p点在圆内 ab cd吗 思考 p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防国考考试题目及答案
- kmp算法数据结构考试试题及答案
- 护理管理正考试题及答案
- 护理编内操作考试题及答案
- 2025教资考试教知真题及答案
- 2025交规考试真题及答案
- 2025护士求职考试真题及答案
- 考点解析-人教版八年级上册物理声现象《噪声的危害和控制》综合练习练习题(含答案解析)
- 单招培训第八类考试题及答案
- 洱源县期中考试卷及答案
- 安全管理之美国消防安全观念和安全防范措施
- 高考日语基础归纳总结与练习(一轮复习)
- 社会学导论(第五版)孙立平课件
- 诗词大会题库及答案选择题范文
- GB/T 622-2006化学试剂盐酸
- CB/T 3686-1995电汽热水柜
- 名著阅读《朝花夕拾 狗猫鼠》课件-部编版语文七年级上册
- 教师粉笔字训练课件
- 园林绿化工国家职业技能标准(2022年版)
- YYT 1244-2014 体外诊断试剂用纯化水
- Q∕SY 1802-2015 石油炼制与化工装置工艺设计包编制规范
评论
0/150
提交评论