已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数线 设P x y 是 终边上任一点 线段0P的长度为r 复习 任意角三角函数的定义 比值叫做的正弦 记作 即 比值叫做的余弦 记作 即 比值叫做的正切 记作 即 x 角 的终边 1 设 是一个任意角 它的终边与单位圆交于点P x y 角 的三角函数是怎样定义的 2 三角函数在各象限的函数值符号分别如何 一全正 二正弦 三正切 四余弦 3 公式 其数学意义如何 终边相同的角的同名三角函数值相等 4 角是一个几何概念 同时角的大小也具有数量特征 我们从数的观点定义了三角函数 如果能从图形上找出三角函数的几何意义 就能实现数与形的完美统一 可以用何种几何元素表示任意角三角函数值 新课讲授 一 单位圆 1 定义 一般地 我们把以坐标原点为圆心 半径为1的圆称为单位圆 2 单位圆与x轴的交点 单位圆与y轴的交点 1 0 和 1 0 0 1 和 0 1 3 正射影 过P作PM垂直X轴于点M PN垂直Y轴于点N 则点M N分别是点P在X Y轴上的正射影 正弦线和余弦线 问题1 如图 设角 为第一象限角 其终边与单位圆的交点为P x y 则 都是正数 你能分别用一条线段表示角 的正弦值和余弦值吗 问题2 若角 为第三象限角 其终边与单位圆的交点为P x y 则 都是负数 此时角 的正弦值和余弦值分别用哪条线段表示 正弦线和余弦线 为了简化上述表示 我们设想将线段的两个端点规定一个为始点 另一个为终点 使得线段具有方向性 带有正负值符号 根据实际需要 我们规定线段从始点到终点与坐标轴同向时为正方向 反向时为负方向 规定了始点和终点 带有方向的线段 叫做有向线段 由上分析可知 当角 为第一 三象限角时 sin cos 可分别用有向线段MP OM表示 即MP sin OM cos 那么当角 为第二 四象限角时 你能检验这个表示正确吗 小结 设角 的终边与单位圆的交点为P 过点P作x轴的垂线 垂足为M 称有向线段MP OM分别为角 的正弦线和余弦线 思考 当角 的终边在坐标轴上时 角 的正弦线和余弦线的含义如何 练习 说出OM MO AT TA MP AO的符号 A 1 0 O x y M P T 正切线 问题1 如图 设角 为第一象限角 其终边与单位圆的交点为P x y 则是正数 用哪条有向线段表示角 的正切值最合适 问题2 若角 为第四象限角 其终边与单位圆的交点为P x y 则是负数 此时用哪条有向线段表示角 的正切值最合适 正切线 思考 若角 为第二象限角 其终边与单位圆的交点为P x y 则是负数 此时用哪条有向线段表示角 的正切值最合适 思考 若角 为第三象限角 其终边与单位圆的交点为P x y 则是正数 此时用哪条有向线段表示角 的正切值最合适 思考 根据上述分析 你能描述正切线的几何特征吗 过点A 1 0 作单位圆的切线 与角 的终边或其反向延长线相交于点T 则AT tan 思考 当角 的终边在坐标轴上时 角 的正切线的含义如何 当角 的终边在x轴上时 角 的正切线是一个点 当角 的终边在y轴上时 角 的正切线不存在 思考 设 为锐角 你能根据正弦线和余弦线说明sin cos 1吗 MP OM OP 1 思考 应用三角函数线可以认识哪些三角函数性质 思考 观察下列不等式 你有什么一般猜想 思考 对于不等式 其中 为锐角 你能用数形结合思想证明吗 例练讲解 例1 分别作出和的正弦线 余弦线和正切线 解 在直角坐标系中做单位圆 以OX轴为始边作2 3的终边与单位圆交于P1点 作P1M1 OX轴 垂足为M1 由单位圆与OX正方向的交点A作OX轴的垂线与OP的反向延长线交于T1点 则Sin M1P1 ON1 Cos OM1 tan AT1 例2设 是任意角 作 的正弦线 余弦线 正切线 由图证明下列各等式 1 sin cos 1 证明 1 若角 终边落在象限内 由图可知 sin cos ON OM PM OM OP 1若角 的终边落在轴上则 sin 和 cos 必有一个为1 另一个为0 sin cos 1 象限角 轴角 2 tan sin cos 是锐角 3 sin cos 1 证明 若角 终边落在象限内 由图可知 OPM中 MP OM OP 1若角 终边落在轴上 MP 和 OM 必有一个为1 另一个为0 MP OM 1而 MP ON sin OM cos 故 sin cos 1 例3 在单位圆中画出适合下列条件的角 的终边的范围 并由此写出角 的集合 1 sin 2 cos 分析 作出满足sin cos 的角的终边 然后根据已知条件确定角 终边的范围 解析 1 如图 作直线y 交单位圆于A B两点 连结OA OB 则OA与OB围成的区域即为角 的终边的范围 故满足条件的角 的集合为 2 作直线x 交单位圆于C D两点 连结OC OD 则OC与OD围成的区域 图中阴影部分 即为角 终边的范围 故满足条件的角 的集合为 评析 本题的实质是解三角不等式的问题 1 可以运用单位圆及三角函数线 2 也可以用三角函数图象 体现了数形结合的数学思想方法 例3在0 内 求使成立的 的取值范围 例4求函数的定义域 1 三角函数线是三角函数的一种几何表示 即用有向线段表示三角函数值 是今后进一步研究三角函数图象的有效工具 5 利用三角函数线处理三角不等式问题 是一种重要的方法和技巧 也是一种数形结合的数学思想 课堂小结 2 用字母表示有向线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026-2031年中国生物传感器行业市场分析及投资可行性研究报告
- 小学控辍保学残疾儿童送教上门工作计划
- 2026-2031年中国数据采集器行业市场专项调研及投资前景可行性预测报告
- 2026-2031年中国温湿度压差测试仪行业发展现状与投资战略规划可行性报告
- 2025年中级社会工作者综合能力真题及答案
- 通化市公费师范生招聘真题2025
- 简阳市法院书记员招聘笔试真题2025
- 2025-2030中医药标准化建设与产业高质量发展报告
- 2025至2030机电制动器行业项目调研及市场前景预测评估报告
- 2025至2030中国锂电池行业项目调研及市场前景预测评估报告
- 军士生生涯规划
- 基层矛盾纠纷调解培训课件
- 护理部床边综合能力核课件
- 2024山东省枣庄市市中区科目一模拟考试100题【有答案版】
- 足疗店应急处理预案
- 重庆市英语中考2023年任务型阅读解题技巧课件
- 灭火战术课件-灭火战斗
- 三力测试题库附答案
- SWITCH 勇者斗恶龙11S 金手指 版本:v1.0.3 最大金币 最大迷你奖章 32倍经验 最大攻击 所有材料
- 软件开发综合实训
- 2023年江西省信息技术学业水平考试题题库
评论
0/150
提交评论