



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 平行四边形的判定第1课时 平行四边形的判定(1)【知识与技能】1.会证明平行四边形的2 种判定方法;2.理解平行四边形的这两种判定方法,并学会简单运用.【过程与方法】在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.【情感态度】通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.【教学重点】平行四边形判定方法的探究、运用.【教学难点】平行四边形判定方法的运用.一.情景导入,初步认知1平行四边形的定义是什么?它有什么作用?2平行四边形还有哪些性质?【教学说明】教师提出问题,由学生独立思考,并回答定义正反两方面的作用,总结出平行四边形的其他几条性质二.思考探究,获取新知探究1:平行四边形的判定定理1.用两对长度分别相等的笔,能否在平面内用这四根笔摆成一个平行四边形?你能说明你所摆出的四边形是平行四边形吗? 【教学说明】通过学生的互相交流,口述其推理论证的过程根据学生的认知水平,教师应估计到学生可能会在推理论证时遇到困难,所以应加以适当引导【归纳结论】两组对边分别相等的四边形是平行四边形.探究2:平行四边形的判定定理2.请利用两根长度相等的笔能摆出以笔顶端为顶点的平行四边形.你能说明你所摆出的四边形是平行四边形吗?【归纳结论】一组对边平行且相等的四边形是平行四边形.三.运用新知,深化理解1. 如图,在平行四边形ABCD中,E.F分别是AD、BC的中点求证:四边形BFDE是平行四边形. 证明:四边形ABCD是平行四边形AD=CB,AD/BC. 又E.F分别是AD、BC的中点,ED=AD,BF=BC.DE=BF.又EDBF,四边形BFDE是平行四边形.2.如图,ABDC,DC=EF=10,DE=CF=8,则图中的平行四边形有_,理由分别是_、_.答案:四边形ABCD,四边形CDEF;一组对边平行且相等的四边形是平行四边形,两组对边分别相等的四边形是平行四边形.3.如图,E.F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:_,使四边形AECF是平行四边形. 答案:BE=DF或BAE=DCF等任何一个均可.4.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:_. 答案:ADBC,AB=CD,A+B=180,C+D=180等.5.如图,在ABCD中,已知M和N分别是边AB.DC的中点,试说明四边形BMDN也是平行四边形. 证明:ABCD,ABCD.M.N是中点,BM=AB,DN=CD.BMDN.四边形BMDN也是平行四边形. 【教学说明】学生在思考的过程中逐步熟悉平行四边形的定义,并知道举一反三,掌握证明平行四边形的方法.四.师生互动,课堂小结(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?(2)我们是通过什么方法得出平行四边形的这几种判定方法的?这样的探索过程对你有什么启发?(3)类比、观察、拼图、实验等都是学习数学.发现结论的常用方法本节课在引入的环节上,采用复习引入的方式首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫知识的真正获得不是靠知者的“告诉”,而是在于学习者的亲身体验所得,本节课判定方法的得出都非常重视知识的发生.形成过程,让学生亲历了类比.观察.实验.猜想.验证.推理的整个过程,培养学生的探究能力,发展学生的合情推理能力学生把所学知识灵活地加以运用,有效地激发了学生的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《英语课程与教学论II》2024-2025学年第一学期期末试卷
- 湄洲湾职业技术学院《分子生物学讨论课》2024-2025学年第一学期期末试卷
- 陕西科技大学《生物材料表界面工程》2024-2025学年第一学期期末试卷
- 护理人员职业技能考核标准与培训方案
- 小学英语教学衔接期末报告
- 平面直角坐标系教学设计与案例点评
- 小学体育教学跳绳项目方案
- 邵阳学院《广场舞培训》2024-2025学年第一学期期末试卷
- 广州航海学院《产品创新设》2024-2025学年第一学期期末试卷
- 广州医科大学《工程热力学2》2024-2025学年第一学期期末试卷
- 2025年教师招聘小学语文真题及答案
- KET教学课件新版
- 新高三开学第一课(共29张ppt) 老师分享
- JJG 966-2010手持式激光测距仪
- GB/T 16657.2-1996工业控制系统用现场总线第2部分:物理层规范和服务定义
- GA/T 150-2019法医学机械性窒息尸体检验规范
- 《人类行为与社会环境》课件
- 头位难产识别和处理
- (完整版)文献调研报告模板
- 《透视灵魂看人生》-曾仕强
- 浅谈新课标下的高中英语教学
评论
0/150
提交评论