




已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节古典概型 三年3考高考指数 1 事件 1 基本事件 在一次试验中可能出现的每一个基本结果 2 等可能基本事件 在一次试验中 每个基本事件发生的可能性都相同 则称这些基本事件为等可能基本事件 即时应用 1 思考 在一次试验中 其基本事件的发生一定是等可能的吗 提示 不一定等可能 如试验一粒种子是否发芽 其发芽和不发芽的可能性是不相等的 2 某校高一年级要组建数学 计算机 航空模型三个兴趣小组 某学生只选报其中的2个 则基本事件共有个 解析 该生选报的所有可能情况是 数学和计算机 数学和航空模型 计算机和航空模型 所以基本事件的个数为3 答案 3 2 古典概型 即时应用 1 思考 先后抛掷两枚质地均匀的硬币 有人说 一共出现 两枚正面 两枚反面 一枚正面 一枚反面 三种结果 因此出现 一枚正面 一枚反面 的概率是 这种说法正确吗 提示 不正确 两枚硬币编号为1 2 则基本事件应为 正1 正2 正1 反2 反1 正2 反1 反2 故出现一正一反有 正1 反2 反1 正2 两种情况 故所求概率为 2 判断下列试验是否是古典概型 请在括号中填写 是 或 否 投掷一颗质地不均匀的骰子 观察其朝上的点数 口袋里有2个白球和2个黑球 这4个球除颜色外完全相同 从中任取一球 向一个圆面内随机地投一个点 该点落在圆内任意一点都是等可能的 射击运动员向一靶心进行射击 试验结果为命中10环 命中9环 命中0环 解析 对于 由于质地不均匀 故每个面朝上的概率不相等 对于 摸到白球和黑球的概率相同 均为 对于 基本事件有无限个 对于 由于受射击运动员水平的影响 命中10环 命中9环 命中0环的可能性不等 故只有 是古典概型 答案 否 是 否 否 3 在一个袋子中装有分别标注数字1 2 3 4 5的五个小球 这些小球除标注的数字外完全相同 现从中随机取出2个小球 则取出的小球标注的数字之差的绝对值为2或4的概率是 解析 取2个小球的不同取法有 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5 共10种 其中标注的数字之差的绝对值为2或4的有 1 3 2 4 3 5 1 5 共4种 故所求的概率为答案 4 若以连续掷两次骰子分别得到的点数m n作为p点的坐标 则点p落在圆x2 y2 16内的概率是 解析 基本事件的总数为6 6 36个 记事件a m n m n 落在圆x2 y2 16内 则a所包含的基本事件有 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 共8个 p a 答案 方法点睛 1 求古典概型概率的步骤第一步 仔细阅读题目 弄清题目的背景材料 加深理解题意 第二步 判断本试验的结果是否为等可能事件 设出所求事件a 第三步 分别求出基本事件的总数n与所求事件a中所包含的基本事件个数m 第四步 利用公式p a 求出事件a的概率 简单古典概型的概率 2 基本事件个数的确定方法 1 列举法 此法适合于基本事件较少的古典概型 2 列表法 此法适合于从多个元素中选定两个元素的试验 也可看成是坐标法 3 树形图法 树形图是进行列举的一种常用方法 适合于有顺序的问题及较复杂问题中基本事件数的探求 例1 2011 山东高考 甲 乙两校各有3名教师报名支教 其中甲校2男1女 乙校1男2女 1 若从甲校和乙校报名的教师中各任选1名 写出所有可能的结果 并求选出的2名教师性别相同的概率 2 若从报名的6名教师中任选2名 写出所有可能的结果 并求选出的2名教师来自同一学校的概率 解题指南 1 本题考查古典概型 要将基本事件都列出 然后找出2名教师性别相同所含的基本事件的个数 由古典概型概率公式求得结果 2 从报名的6名教师中任选2名 列出基本事件 然后找出2名教师来自同一学校所含的基本事件的个数 由古典概型概率公式求得结果 规范解答 1 从甲校和乙校报名的教师中各任选1名 所有可能的结果为 甲男1 乙男 甲男2 乙男 甲男1 乙女1 甲男1 乙女2 甲男2 乙女1 甲男2 乙女2 甲女 乙女1 甲女 乙女2 甲女 乙男 共9种 选出的2名教师性别相同的结果有 甲男1 乙男 甲男2 乙男 甲女 乙女1 甲女 乙女2 共4种 所以选出的2名教师性别相同的概率为 2 从报名的6名教师中任选2名 所有可能的结果为 甲男1 乙男 甲男2 乙男 甲男1 乙女1 甲男1 乙女2 甲男2 乙女1 甲男2 乙女2 甲女 乙女1 甲女 乙女2 甲女 乙男 甲男1 甲男2 甲男1 甲女 甲男2 甲女 乙男 乙女1 乙男 乙女2 乙女1 乙女2 共15种 选出的2名教师来自同一学校的所有可能的结果为 甲男1 甲男2 甲男1 甲女 甲男2 甲女 乙男 乙女1 乙男 乙女2 乙女1 乙女2 共6种 所以选出的2名教师来自同一学校的概率为 反思 感悟 有序 无序问题的差异在求解本题时应注意第 1 问属于有顺序的问题 该类问题的基本事件按先甲校再乙校分步列举 第 2 问属于无顺序的问题 基本事件利用列举法 按一定顺序分类列举 变式训练 用红 黄 蓝三种不同颜色给下图中3个矩形随机涂色 每个矩形只涂一种颜色 求 1 3个矩形颜色都相同的概率 2 3个矩形颜色都不同的概率 解析 所有可能的基本事件共有27个 如图所示 1 记 3个矩形都涂同一颜色 为事件a 由图知 事件a的基本事件有3个 故p a 2 记 3个矩形颜色都不同 为事件b 由图可知 事件b的基本事件有6个 故 变式备选 袋内装有6个球 每个球上都记有从1到6的一个号码 设号码为n的球重n2 6n 12克 这些球等可能地从袋里取出 不受重量 号码的影响 1 如果任意取出1球 求其重量大于号码数的概率 2 如果不放回地任意取出2球 求它们重量相等的概率 解析 1 由题意 任意取出1球 共有6种等可能的事件 由不等式n2 6n 12 n 得n 4或n 3 所以n 1 2或n 5 6 于是所求概率为 2 从6个球中任意取出2个球 共有15种等可能的方法 列举如下 1 2 1 3 1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5 4 6 5 6 设第n号与第m号的两个球的重量相等 则有n2 6n 12 m2 6m 12 n m n m 6 0 n m n m 6 n m 1 5 或 n m 2 4 故所求概率为 方法点睛 有放回抽样和无放回抽样的对比在古典概型的概率中涉及两种不同的抽取方法 以摸球为例 设袋内装有n个不同的球 现从中依次摸球 每次只摸一只 具有两种摸球的方法 有放回抽样和无放回抽样的概率 1 有放回每次摸出一只后 仍放回袋中 然后再摸一只 这种摸球的方法属于有放回的抽样 显然 对于有放回的抽样 每次摸出的球可以重复 且摸球可无限地进行下去 2 无放回每次摸出一只后 不放回原袋中 在剩下的球中再摸一只 这种摸球方法属于无放回的抽样 显然 对于无放回的抽样 每次摸出的球不会重复出现 且摸球只能进行有限次 提醒 注意一次性抽取与逐次抽取的区别 一次性抽取是无顺序的问题 逐次抽取是有顺序的问题 例2 1 三件产品中含有两件正品a b和一件次品c 每次任取一件 每次取出后不放回 连续取两次 求取出的两件产品中恰有一件次品的概率 2 三件产品中含有两件正品a b和一件次品c 每次任取一件 每次取出后放回 求取出的两件产品恰有一件次品的概率 解题指南 问题的关键在于一种是不放回试验 一种是有放回试验 不放回试验 取一件少一件 而有放回试验 取一件后 再取一件时情况不变 通过列出所有基本事件的方法解答比较直观易懂 规范解答 1 方法一 每次取出一个 取后不放回地连续取两次 其一切可能的结果组成的基本事件有6个 即 a b a c b a b c c a c b 其中小括号内左边的字母表示第1次取出的产品 右边的字母表示第2次取出的产品 a表示 取出的两件中 恰好有一件次品 这一事件 则a a c b c c a c b 事件a由4个基本事件组成 因而 p a 方法二 取出的两件产品中有一件次品 至于是第一次取出 还是第二次取出可不考虑 则所有可能结果有 a b a c b c 共3个基本事件 而恰好有一件次品的基本事件有 a c b c 共2个 因此所求概率为 2 这是有放回试验 第一次被取出的产品 第二次也可能被取出 由于最后关心的是两件产品中有一件次品 因此必须考虑顺序 则所有可能的结果有 a a a b a c b b b a b c c a c b c c 共9个基本事件 其中恰好有一件次品的基本事件有 a c b c c a c b 共4个基本事件 因此每次取出后放回 取出的两件产品恰有一件次品的概率为 互动探究 在本例中 若将条件改为 一次性抽取两件产品 其余条件不变 求取出的两件产品中恰有一件次品的概率 解析 若一次性抽取两件产品 则两件产品之间不存在顺序问题 其结果有ab ac bc共3个基本事件 其中恰好有一件次品的基本事件有ac bc共2个基本事件 故所求概率为 反思 感悟 不放回的逐次抽样问题关于不放回逐次抽样 计算基本事件个数时 既可以看作是有顺序的 也可以看作是无顺序的 其结果是一样的 但不论选择哪一种方式 观察的角度必须一致 否则会导致错误 变式备选 某人有4把钥匙 其中2把能打开门 现随机地取1把试着开门 1 如果不能开门的就扔掉 问第二次才能打开门的概率是多少 2 如果试过的钥匙不扔掉 这个概率又是多少 解析 设能打开门的2把钥匙为a b 不能打开门的2把钥匙为1 2 则 1 不能打开门的就扔掉相当于不放回抽样问题 其基本事件有ab a1 a2 ba b1 b2 1a 1b 12 2a 2b 21共12个 第2次才能把门打开对应的基本事件是1a 1b 2a 2b 共4个 故其概率是 2 试过的钥匙不扔掉相当于有放回抽样问题 其基本事件有aa ab a1 a2 ba bb b1 b2 1a 1b 11 12 2a 2b 21 22共16个 第2次才能把门打开对应的基本事件是1a 1b 2a 2b 共4个 故其概率是 方法点睛 建立概率模型的原则 要求及作用 1 原则 建立概率模型的一般原则是 结果越少越好 这就要求选择恰当的观察角度 把问题转化为易于解决的古典概型问题 2 要求 把什么看作是一个基本事件是人为规定的 它要求每次试验有一个并且只有一个基本事件出现 构建不同的概率模型解决问题 3 作用 一方面 对于同一个实际问题 我们有时可以通过建立不同的 模型 来解决 即 一题多解 在这 多解 的方法中 再寻求较为 简捷 的解法 另一方面 我们又可以用一种 模型 去解决很多 不同 的问题 即 多题一解 例3 同时投掷两粒骰子 求向上的点数之和为奇数的概率 解题指南 适当选取观察角度以减少复杂的计数 角度一 通过坐标法列出所有基本事件 角度二 把一次试验的所有可能结果取为 奇 奇 奇 偶 偶 奇 偶 偶 角度三 把一次试验的所有可能结果取为 点数和为奇数 点数和为偶数 规范解答 方法一 从下图可以看出基本事件与所描点一一对应 有36种 记 向上的点数和为奇数 的事件为a 从图中可以看出 事件a包含的基本事件共有18个 因此方法二 若把一次试验的所有可能结果取为 奇 奇 奇 偶 偶 奇 偶 偶 则它们也组成等概率的样本空间 基本事件总数为4 事件a 点数之和为奇数 包含的基本事件个数为2 故方法三 若把一次试验的所有可能结果取为 点数和为奇数 点数和为偶数 则它们也组成等概率的样本空间 基本事件总数为2 事件a 点数之和为奇数 包含的基本事件个数为1 故 反思 感悟 注意研究事件的特征 灵活选取基本事件可以简化求概率的过程 可以设想 同时投掷n粒骰子 求出现点数之和为奇数的概率 结果仍为 变式训练 抛掷两颗骰子 求 1 向上的点数之和是4的倍数的概率 2 向上的点数之和大于5小于10的概率 解析 从图中容易看出基本事件与所描点一一对应 共36种 1 记 向上的点数之和是4的倍数 为事件a 从图中可以看出 事件a包含的基本事件共有9个 1 3 2 2 2 6 3 1 3 5 4 4 5 3 6 2 6 6 所以p a 2 记 向上的点数之和大于5小于10 为事件b 从图中可以看出 事件b包含的基本事件共有20个 即 1 5 2 4 3 3 4 2 5 1 1 6 2 5 3 4 4 3 5 2 6 1 2 6 3 5 4 4 5 3 6 2 3 6 4 5 5 4 6 3 所以p b 满分指导 古典概型主观题的规范解答 典例 14分 2011 天津高考 编号为a1 a2 a16的16名篮球运动员在某次训练比赛中的得分记录如下 1 将得分在对应区间内的人数填入相应的空格 2 从得分在区间 20 30 内的运动员中随机抽取2人 用运动员的编号列出所有可能的抽取结果 求这2人得分之和大于50的概率 解题指南 1 分别按区间范围列举出人数 2 用列举法 古典概型的概率公式计算概率 规范解答 1 4 6 6 2分 2 得分在区间 20 30 内的运动员编号为a3 a4 a5 a10 a11 a13 4分从中随机抽取2人 所有可能的抽取结果有 a3 a4 a3 a5 a3 a10 a3 a11 a3 a13 a4 a5 a4 a10 a4 a11 a4 a13 a5 a10 a5 a11 a5 a13 a10 a11 a10 a13 a11 a13 共15种 8分 从得分在区间 20 30 内的运动员中随机抽取2人 这2人得分之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渔民上岸协议书
- 宠物繁殖寄养协议书
- 工地超龄录用协议书
- 工龄清零补偿协议书
- 石材班组协议书
- 客户换机申请协议书
- 电力用工协议书
- 寺院合作建设协议书
- 私教免责协议书
- 工程材料转包协议书
- 急诊急救考试题及答案3
- 2025年广东清远市“人才引育”工程专项事业编制高层次人才招聘31人历年自考难、易点模拟试卷(共500题附带答案详解)
- 钢结构机电工程施工方案
- 基于计算思维培养的小学人工智能启蒙教育课程设计与实施
- 机电安装工程总承包合同
- 湘教版四年级下册科学各单元知识点复习
- 课件-2025年春季学期 形势与政策 第一讲-加快建设社会主义文化强国9
- 2025年度江西抚州高新区区属国企业公开招聘纪检监察工作人员10人高频重点模拟试卷提升(共500题附带答案详解)
- 汽车租赁挂靠协议书
- 北京市历年中考语文现代文阅读之非连续性文本阅读8篇(截至2024年)
- 公司内部文件管理规定及办法
评论
0/150
提交评论