八年级下几何综合精选20题.doc_第1页
八年级下几何综合精选20题.doc_第2页
八年级下几何综合精选20题.doc_第3页
八年级下几何综合精选20题.doc_第4页
八年级下几何综合精选20题.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级下几何综合精选20题 2013.61已知:在如图1所示的锐角三角形ABC中,CHAB于点H,点B关于直线CH的对称点为D,AC边上一点E满足EDA=A,直线DE交直线CH于点F (1) 求证:BFAC; (2) 若AC边的中点为M,求证:; (3) 当AB=BC时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论 图1 图22、在ABCD中,A=DBC,过点D作DE=DF,且EDF=ABD,连接EF、EC,N、P分别为EC、BC的中点,连接NP.(1)如图1,若点E在DP上,EF与DC交于点M,试探究线段NP与线段NM的数量关系及ABD与MNP满足的等量关系,请直接写出你的结论;(2)如图2,若点M在线段EF上,当点M在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M的位置,并证明(1)中的结论.图1 A B C D P E F N M 图2A B C D P E F N 3(1)如图1,在矩形ABCD中,AB=2BC,M是AB的中点直接写出BMD与ADM的倍数关系; (2)如图2,若四边形ABCD是平行四边形, AB=2BC,M是AB的中点,过C作CEAD与AD所在直线交于点E若A为锐角,则BME与AEM有怎样的倍数关系,并证明你的结论;当时,上述结论成立;图1 图2当 时,上述结论不成立4 如图,在四边形ABCD中,对角线AC、BD相交于点O,直线MN经过点O,设锐角DOC=,将DOC以直线MN为对称轴翻折得到DOC,直线A D、B C相交于点P(1)当四边形ABCD是矩形时,如图1,请猜想A D、B C的数量关系以及APB与的大小关系;(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论还成立吗?(3)当四边形ABCD是等腰梯形时,如图3,APB与有怎样的等量关系?请证明5已知:正方形中,绕点顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N (1)如图1,当绕点旋转到时,有当 绕点旋转到时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当绕点旋转到如图3的位置时,线段和之间有怎样的等量关系?请写出你的猜想,并证明 6如图,已知四边形ABCD是正方形,对角线ACBD相交于O.(1) 如图1,设 E、F分别是AD、AB上的点,且EOF=90,线段AF、BF和EF之间存在一定的数量关系请你用等式直接写出这个数量关系;(2) 如图2,设 E、F分别是AB上不同的两个点,且EOF=45请你用等式表示线段AE、BF和EF之间的数量关系,并证明.7.探究:(1)如图1,在正方形ABCD中,E、F分别是BC、CD上的点,且EAF45,试判断BE、DF与EF三条线段之间的数量关系,直接写出判断结果: ;(2)如图2,若把(1)问中的条件变为“在四边形ABCD中,ABAD,BD180,E、F分别是边BC、CD上的点,且EAF=BAD”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将AEF绕点A逆时针旋转,当点分别E、F运动到BC、CD延长线上时,如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明.8. 在矩形ABCD中, 点F在AD延长线上,且DF= DC, M为AB边上一点, N为MD的中点, 点E在直线CF上(点E、C不重合).(1)如图1, 若AB=BC, 点M、A重合, E为CF的中点,试探究BN与NE的位置关系及的值, 并证明你的结论; (2)如图2,且若AB=BC, 点M、A不重合, BN=NE,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由; (3)如图3,若点M、A不重合,BN=NE,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.FA(M)DNDACEDNMBFECBFNMECBA 图1 图2 图39已知:,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当APB=45时,求AB及PD的长;(2)当APB变化,且其它条件不变时,求PD 的最大值,及相应APB的大小.10.在ABC中,AB=AC,点P为ABC所在平面内一点,过点P分别作PEAC交AB于点E,PFAB交BC于点D,交AC于点F(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;(2)如图3,当点P在ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系(不用说明理由)ABEFPCD11. 已知:如图,BP是正方形ABCD的一条外角平分线,点E在AB边上, EPED,EP交BC边于点F. (1)若AE : EB=1: 2 ,求cosBEP的值;(2)请你在图上作直线CMDE,CM与直线AD交于点M,猜想:四边形MEPC的形状有什么特点?证明你的结论。12.如图1,在ABC中,ABBC5,AC=6. ECD是ABC沿CB方向平移得到的,连结AE,AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,并证明你的结论; (2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE于点Q,QRBD,垂足为点R.四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;13.在中,过点C作CECD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)(1)在图中画图探究:当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转 得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.14.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知ABC, ACB=90 , ABC=45,分别以AB、BC为边向外作ABD与BCE, 且DA=DB, EB=EC,ADB=BEC=90,连接DE交AB于点F. 探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DGAB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是ABC=30,ADB=BEC=60.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若ABC=30,ADB=BEC=60,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若ADB=BEC=2ABC, 原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明. 图1 图2 图315如图1,在ABC中,ACB为锐角点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF解答下列问题:(1)如果AB=AC,BAC=90当点D在线段BC上时(与点B不重合),如图2,线段CF、BD之间的位置关系为_ ,数量关系为_图1图2图3当点D在线段BC的延长线上时,如图3,中的结论是否仍然成立,为什么?16.问题:如图1,在菱形和菱形中,点在同一条直线上,是线段的中点,连结若,探究与的位置关系及的值小聪同学的思路是:延长交于点,构造全等三角形,经过推理使问题得到解决DCGPABEF图2DABEFCPG图1请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段与的位置关系及的值;(2)将图1中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图2)你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明图117(1)如图(1),ABC是等边三角形,D、E分别是AB、BC上的点,且,连接AE、CD相交于点P.请你补全图形,并直接写出APD的度数;APD =_(2)如图(2),RtABC中,B=90,M、N分别是图2AB、BC上的点,且,连接AN、CM相交于点P. 请你猜想APM=_ ,并写出你的推理过程.18.正方形ABCD中,点O是对角线AC的中点,P为对角线AC上的一动点,过点P做PFDC与点F,如图1,当点P与点O重合时,显然有DF=CF。(1)如图2,若点P在线段OA上(不与点A、O重合),PEPB且PE交CD于点E求证:DF=EF;写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;(2)若点P在线段CA的延长线上,PEPB且PE交CD于点E,请完成图3并判断(1)中的结论、是否成立?若不成立,写出相应的结论(所写结论均不必证明)19.如图1,在ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作APCD,AC与PD相交于点E,已知ABC=AEP=(090).(1)求证:EAP=EPA;(2)APCD是否为矩形?请说明理由;(3)如图2,F为BC中点,连接FP,将AEP绕点E顺时针旋转适当的角度,得到MEN(点M、N分别是MEN的两边与BA、FP延长线的交点)。猜想线段EM与EN之间的数量关系,并证明你的结论.图1ABDCEP图2ABDCEP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论