




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时作业14椭圆、双曲线、抛物线12019江西南昌一模已知抛物线方程为x22y,则其准线方程为()Ay1 By1Cy Dy解析:由题意得,抛物线的准线方程为y,故选C.答案:C22019河南南阳期末若双曲线1(a0)的一条渐近线与直线yx垂直,则此双曲线的实轴长为()A2 B4C18 D36解析:双曲线的渐近线方程为yx,由题意可得1,得a9,2a18.故选C.答案:C32019安徽合肥二检已知椭圆1(ab0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2BAP,则该椭圆的离心率是()A. B.C. D.解析:如图,由题意知,P为以F1A为直径的圆上一点,所以F1PAP,结合F2BAP知F1PF2B.又|F1B|F2B|,所以BF1F2为等腰直角三角形,所以|OB|OF2|,即bc,所以a2b2c22c2,即ac,所以椭圆的离心率e,故选D.答案:D42019湖北六校联考已知F1,F2分别为双曲线1(a0,b0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,PF1F230,且虚轴长为2,则该双曲线的标准方程为()A.1 B.1C.1 Dx21解析:依题意得2b2,tan60,于是b,2c,ac,a,得a1,因此该双曲线的标准方程为x21,故选D.答案:D52019湖南四校联考已知A,B,P是双曲线1(a0,b0)上不同的三点,且A,B的连线经过坐标原点,若直线PA,PB的斜率乘积kPAkPB3,则该双曲线的离心率为()A. B.C2 D3解析:由双曲线的对称性知,点A,B关于原点对称,设A(x1,y1),B(x1,y1),P(x2,y2),则1,1,又kPA,kPB,所以kPAkPB3,所以离心率e2,故选C.答案:C62019湖南长沙一模已知抛物线C:y22px(p0)的焦点为F,点A(a0)在C上,|AF|3.若直线AF与C交于另一点B,则|AB|()A12 B10C9 D4.5解析:由抛物线的定义知|AF|3,解得p4,所以抛物线C的方程为y28x,A(1,a)(a0),则a28,解得a2或a2(舍去),所以A(1,2)又焦点F(2,0),所以直线AF的斜率为2,直线AF的方程为y2(x2),代入抛物线C的方程y28x,得x25x40,所以xAxB5,|AB|xAxBp549,故选C.答案:C72019湖南长沙模拟已知F1,F2是双曲线C:1(a0,b0)的两个焦点,P是C上一点,若|PF1|PF2|6a,且PF1F2最小内角的大小为30,则双曲线C的渐近线方程是()A.xy0 Bxy0Cx2y0 D2xy0解析:由题意,不妨设|PF1|PF2|,则根据双曲线的定义得,|PF1|PF2|2a.又|PF1|PF2|6a,所以|PF1|4a,|PF2|2a.在PF1F2中,|F1F2|2c,而ca,所以|PF2|b0)的左、右焦点,B为C的短轴的一个端点,直线BF1与C的另一个交点为A,若BAF2为等腰三角形,则()A. B.C. D3解析:如图,不妨设点B在y轴的正半轴上,根据椭圆的定义,得|BF1|BF2|2a,|AF1|AF2|2a,由题意知|AB|AF2|,|BF1|BF2|a,所以|AF1|,|AF2|.所以.故选A.答案:A102019广东仲元中学模拟已知椭圆C:1(ab0)的离心率为,直线l与椭圆C交于A,B两点,且线段AB的中点为M(2,1),则直线l的斜率为()A. B.C. D1解析:由,得,a24b2,则椭圆C的方程为x24y24b2.设A(x1,y1),B(x2,y2),则x1x24,y1y22,把A,B的坐标代入椭圆方程,得,得(x1x2)(x1x2)4(y1y2)(y1y2),.直线l的斜率为.故选C.答案:C112019河北衡水中学五调已知双曲线1(a0,b0)的左、右焦点分别为F1,F2,过F1作圆x2y2a2的切线,交双曲线右支于点M,若F1MF245,则双曲线的渐近线方程为()Ayx ByxCyx Dy2x解析:如图,作OAF1M于点A,F2BF1M于点B,F1M与圆x2y2a2相切,F1MF245,|OA|a,|F2B|BM|2a,|F2M|2a,|F1B|2b.又点M在双曲线上,|F1M|F2M|2a2b2a2a,整理,得ba,双曲线的渐近线方程为yx,故选A.答案:A122019重庆七校联考已知椭圆和双曲线有共同的焦点F1,F2,P是它们的一个交点,且F1PF2,记椭圆和双曲线的离心率分别为e1,e2,则()A4 B2C2 D3解析:设椭圆的长半轴长为a1,双曲线的实半轴长为a2,不妨设焦点在x轴上且点P与点F2在y轴同一侧,根据椭圆和双曲线的定义,得|PF1|PF2|2a1,|PF1|PF2|2a2,所以|PF1|a1a2,|PF2|a1a2.又|F1F2|2c,F1PF2,所以在F1PF2中,|F1F2|2|PF1|2|PF2|22|PF1|PF2|cos F1PF2,即4c2(a1a2)2(a1a2)22(a1a2)(a1a2)cos,化简得3aa4c2,两边同除以c2,得4.故选A.答案:A132019吉林长春质检若椭圆C的方程为1,则其离心率为_解析:解法一由已知可得a2,c1,故椭圆C的离心率e.解法二由已知得椭圆C的离心率e.答案:142019河南郑州一中摸底测试从抛物线yx2上一点P引抛物线准线的垂线,垂足为M,且|PM|5.设抛物线的焦点为F,则MPF的面积为_解析:由题意,得x24y,则抛物线的准线方程为y1.设P(x0,y0),则由抛物线的定义知|PM|y01,所以y04,所以|x0|4,所以SMPF|PM|x0|5410.答案:10152019河南安阳二模已知抛物线C1:yax2(a0)的焦点F也是椭圆C2:1(b0)的一个焦点,点M,P分别为C1,C2上的点,则|MP|MF|的最小值为_解析:将P代入1,可得1,b,c1,抛物线C1的焦点F的坐标为(0,1),抛物线C1的方程为x24y,准线为直线y1.设点M在准线上的射影为D,根据抛物线的定义可知|MF|MD|,要求|MP|MF|的最小值,即求|MP|MD|的最小值易知当D,M,P三点共线时,|MP|MD|最小,最小值为1(1)2.答案:2162019辽宁五校协作体联考已知双曲线C:1(a0,b0)的左、右焦点分别为F1,F2,点A为双曲线C虚轴的一个端点,若线段AF2与双曲线右支交于点B,且|AF1|BF1|BF2|341,则双曲线C的离心率为_解析:由双曲线的定义可得|BF1|BF2|2a,因为|BF1|BF2|41
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46024-2025色漆和清漆用流出杯测定流出时间
- GB/T 45856-2025真空技术真空计皮拉尼真空计的规范、校准和测量不确定度
- GB/T 45895-2025麻醉和呼吸设备医用气体不可互换螺纹(NIST)低压接头的尺寸
- 森林防火知识培训必要性
- 森林火灾知识培训内容
- 森林法基础知识培训课件
- 幼儿园培训教学课件
- 2025年老年护理专业招聘考试预测题
- 风湿疾病试题及答案
- 2025健康照护技师考试题库及答
- 医疗质量控制中心管理办法
- 《西方经济学》(下册)课程教案
- 电子政务网络安全风险
- 中式烹调师高级技师试题库及参考答案
- 急危重症护理学第四版电子版参考文献格式
- 第5章-系统模型课件
- 台湾-国民年金保险课件
- 血透室运用PDCA循环降低无肝素透析凝血发生率品管圈成果汇报
- 三叉神经痛微球囊压迫术的护理
- 主持人妆 男主持人上镜妆
- 安全伴我行-大学生安全教育智慧树知到答案章节测试2023年哈尔滨工程大学
评论
0/150
提交评论