




已阅读5页,还剩52页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 6晶体的对称性一些晶体在几何外形上表现出明显的对称 如立方 六角等对称对称性不仅表现在几何外形上 而且反映在晶体的宏观物理性质中对称性是物理学当中非常基本的概念 晶体具有各种宏观对称性 原因就在于原子的规则排列 对称性的本质是指系统中的一些要素是等价的 对称性越高的系统 描述起来就越简单 需要独立地表征的系统要素就越少 在晶格这个物理系统中 一种对称性 是指某些要素互相等价 而互相等价的要素就是晶格中的几何形体 点 线 面 为了清楚地显示出某一种点阵对称性 需要进行相应的对称操作 点阵对称操作 假设在某一个操作过后 点阵不变 也就是每个格点的位置都得到重复 那么这个平移 旋转或镜反射操作就叫一个点阵对称操作 1 6晶体的对称性 按照空间群理论 晶体的对称类型是由少数基本的对称操作 8种 组合而成对点阵对称性的精确数学描述 需要用点群和空间群的概念 如果基本对称操作中不包括平移 则组成32种宏观对称类型 称为点群如果包括平移 就构成230种微观的对称性 称为空间群 能使一个图像复原的全部不等同操作 形成一个对称操作群 1 6晶体的对称性 线性变换晶体的对称性 晶体经过某种操作后恢复原状的性质在操作前后应不改变晶体中任意两点间的距离如用数学表示 这些操作就是熟知的线性变换设经过某个操作 把晶格中任一点X变为X 这操作可表示为线性变换 式中 在数学上 xj xk等也可认为是空间同一点在两个坐标系中的坐标 即 1 6晶体的对称性 用矩阵表示 1 式可表示为 为转置矩阵 即行列互换所得矩阵 因此要求 操作前后 两点间的距离应保持不变 这要求 转置运算 反序定律 1 6晶体的对称性 正交矩阵的其它性质 1 若A是正交矩阵 则 A 1 2 设A B是正交矩阵 则AB也是正交矩阵 3 正交矩阵的转置矩阵仍是正交矩阵 4 正交矩阵是可逆矩阵 且正交矩阵的逆矩阵是正交矩阵 下面介绍几种简单操作的变换关系 即A为正交矩阵 1 6晶体的对称性 一 转动 将某图形绕x1轴转过 角 该图形中任一点变化关系如下 则变换关系是 1 6晶体的对称性 二 中心反演 i 取中心为原点 经中心反演后 图形中任一点 也就是 如经此操作后 晶体与自身重合则为具有中心反演对称 常用字母i代表 1 6晶体的对称性 三 镜象 镜面 如以x3 0作为镜面 镜象对称操作是将图形的任何一点 我们注意到上面所考虑的几何变换 旋转和反射 都是正交变换 保持两点距离不变的变换 如果一个物体在某一正交变换下不变 我们就称这个变换为物体的一个对称操作 显然 一个物体的对称操作愈多 就表明它的对称性愈高 变为 1 6晶体的对称性 山和水在玩镜面操作 1 6晶体的对称性 小猫在研究镜面操作 1 6晶体的对称性 山和水在玩镜面操作 1 6晶体的对称性 人和牛在玩投影 1 6晶体的对称性 存在一定变化与对比的对称 1 6晶体的对称性 1 6晶体的对称性 1 6晶体的对称性 1 6晶体的对称性 1 6晶体的对称性 1 6晶体的对称性 四 基本的对称操作1 不包括平移的基本对称操作 a n度旋转对称轴假设纸面上有一列格点 通过A点有一垂直于纸面的对称轴 当晶体绕其转动 后与自身重合 在此对称操作作用下 B点转至B 位置 由于晶格的周期性 B点应与A点等价 因此在B点必须也存在一转角为 的垂直对称转轴 而且绕此轴转动 角也必然是一对称操作 在此操作作用下 A点变至A 点 1 6晶体的对称性 由几何关系得知A B AB 因而 晶体周期性必然要求A B 为AB的整数倍 因为AB为此方向上格点排列的周期 但从图可见 因此1 2cos m式中m为整数 由于 cos 1 可得到当m为 1 0 1 2 3时 分别为 1 6晶体的对称性 即 晶体绕固定轴转动对称操作的转角只可能是 而n必须是1 2 3 4 和6 i为任意整数 常将这一类转动对称轴称作n度旋转轴 晶体周期性结构限制了只能存在2度 3度 4度和6度对称轴 1 6晶体的对称性 1 6晶体的对称性 n 1相当于不变 即不施加任何操作 通常也看作一个对称操作 对称轴度数的符号表 例如 a 表示方解石 晶体属三方晶系的碳酸盐矿物 菱面体的3度转轴 b 表示岩盐立方体的4度 3度及2度转轴 对于立方体而言 对面中心的连线为4度轴 不在同一立方面上的平行棱边中点的连线为2度轴 而体对角线为3度轴 因此 立方体有三个4度轴 六个2度轴和四个3度轴 c 表示硅钼酸鉀晶体的6度及2度转轴 1 6晶体的对称性 b 中心反演使坐标r变成 r的操作称对原点的中心反演 经此操作后 晶体与自身重合则为具有中心反演对称 常用字母i代表 1 6晶体的对称性 c n度旋转反演轴晶体经绕轴作n度旋转与中心反演的复合操作后与自身重合则称其具有n度旋转反演轴对称 晶体由于受周期性的制约 也只可能有2 3 4 与6度旋转反演轴 分别用数字符号表示 1 6晶体的对称性 n度旋转反演轴的对称性 操作的总效果一样 1 6晶体的对称性 由图可见 就是对称心i 即 就是垂直于该轴的对称镜面 记为m 即镜面对称 镜面对称是晶体的一类很重要的对称性 用m表示 金刚石结构或闪锌矿结构具有4度旋转反演轴 1 6晶体的对称性 必须注意的是 具有n度旋转反演轴对称的晶体不一定具有n度转轴与中心反演这两种对称性即具有复合操作对称性不一定意味着同时具备构成复合的操作的对称性 如具有单一操作的对称性 必具有由它们复合构成的操作的对称性 1 6晶体的对称性 综上所述 晶体的宏观对称性中有以下八种基本的对称操作 即 这些基本的对称操作可按一定的规律组合起来 就得到32种不包括平移的宏观对称类型 这种组合有一个共同的特点 就是其中所有的对称操作都使晶体中的某一点固定不动 因此常称这种组合为点对称性群 简称点群 1 6晶体的对称性 第一章晶体结构和X射线衍射 1 6晶体的对称性 立方对称的48个对称操作称为立方点群Oh 1 6晶体的对称性 2 包括平移的基本对称操作从微观结构上看 如按照操作后使晶体与自身重合的定义 晶体中还有螺旋轴与滑移面两类对称性 在这两类操作作用下 晶体中不再有任何固定不变的点存在 因而它们不属于点群操作 1 6晶体的对称性 T为转轴方向的晶格周期 l为某小于n的整数 晶体只能有1度 2度 3度 4度 6度螺旋轴 1 6晶体的对称性 金刚石结构具有4度螺旋轴对称取原胞 如图 上下底面心到该面一个棱的垂线的中点 联接这两中点的直线就是个4度螺旋轴 晶体绕该轴转90度后 再沿该轴平移a 4 能自相重合 1 6晶体的对称性 金刚石结构具有4度螺旋轴对称 1 6晶体的对称性 2 滑移反映面这是对某一平面作镜像操作后 再沿平行于镜面的某方向平移T n周期的对称操作 T是该方向上的周期矢量 n为2或4 操作后 晶体中的原子和相同的原子重合 1 6晶体的对称性 应当说明的是 对于宏观晶体而言 n度螺旋轴与n度旋转轴是等价的滑移面与镜面也是等价的 因为在宏观的范围通常观察不到原子间距数量级的平移 1 6晶体的对称性 将32种宏观点群再加上以上二类带平移的对称操作 结合起来就可以导出230种微观空间群 它们可以描写晶体所有可能的对称性 每种空间群对应于一种特殊的晶格结构 晶体之星http www crystalstar org 1 6晶体的对称性 1 6晶体的对称性 1 6晶体的对称性 1 6晶体的对称性 1 6晶体的对称性 1 6晶体的对称性 1 7晶体结构的分类 我们已经知道布喇菲格子可以由 的格矢表示 基矢a b c之间的关系 即其长度的异同和彼此间夹角决定了不同的布喇菲格子的类型 前面我们已经看到晶体在宏观对称操作作用下 其空间格子必相应地变动 因此 布喇菲格子的形式 即三个基矢之间的关系必然受到宏观对称性的制约 晶格周期性 即空间格子对于对称性的制约 结果是只能有32种点群对称 反过来 点对称性对于空间格子的周期性即平移对称性的限制的结果是只能存在14种布喇菲格子 原胞 1 7晶体结构的分类 一 七大晶系 1850年 德国科学家布喇菲 AugusteBravais1811 1863 首先证明了三维晶格只有14种布喇菲点阵 这十四种布喇菲点阵按其惯用晶胞的对称性 基矢长短和夹角大小 特征划分为七大晶系 初基点阵 加心 14 1 7晶体结构的分类 1 7晶体结构的分类 7个晶系 crystalClasses 1 7晶体结构的分类 二 布喇菲点阵符号 Bravaislatticenotation 简写为BLN 在a b c矢量张成的单胞中 加入一个或几个格点以后 仍然是布喇菲点阵 符号为 P 简单 每单胞一个原子 格点位置 000I 体心 每单胞两个原子 格点位置 000 1 21 21 2F 面心 每单胞四个原子 格点位置 000 01 21 2 1 201 2 1 21 20A 底心 每单胞两个原子 格点位置 000 01 21 2B 底心 每单胞两个原子 格点位置 000 1 201 2C 底心 每单胞两个原子 格点位置 000 1 21 20 1 7晶体结构的分类 三 七
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国销量最好的数学试卷
- 桥面钢丝支撑施工方案(3篇)
- 钢架拱门施工方案(3篇)
- 航天考试题库及答案
- 村医考试题库及答案
- 安徽省宣城市宣州区2023-2024学年高三下学期高考第三次模拟考试语文题库及答案
- 产品质量问题追溯体系缺陷产品管理工具
- 热血战士出发1000字7篇
- 广告行业方案书及演示模板通版
- 狼王梦读后感900字(9篇)
- 音响设备消费行为预测-洞察及研究
- 手术部(室)医院感染控制标准WST855-2025解读课件
- 2025年纪检监察新入职人员岗前考试试题库及答案
- 2025年0-3岁儿童发展指南
- 2025年安徽演艺集团有限责任公司招聘20人笔试备考题库及完整答案详解
- 2025数字量化混凝土配合比设计标准
- 三升四数学综合练习(60天)暑假每日一练
- 宁德新能源verify测试题库
- 2025届广州市高三年级阶段训练(8月市调研摸底) 数学试卷(含答案)
- FZ/T 62025-2015卷帘窗饰面料
- 公司办公用品领用管理制度
评论
0/150
提交评论