eviews模型诊断ppt课件_第1页
eviews模型诊断ppt课件_第2页
eviews模型诊断ppt课件_第3页
eviews模型诊断ppt课件_第4页
eviews模型诊断ppt课件_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章模型诊断 邹突变点检验 检验是否存在突变点 邹模型稳定性检验 检验模型是否可以进行预测 似然比检验 检验模型是否存在缺失变量或存在冗余变量 Wald检验 检验模型的约束条件是否有效 两个邹检验用来检查不同时期或不同截面数据子样本相互关系的稳定性 该检验中最重要的步骤是将数据集合T分为T1和T2两个部分 T1用于估计 剩下的T2用于检验 若利用所有可得到的样本观测值对方程进行估计 则可以寻找到最适合给定数据集合的方程 但是这样就无法检验该模型的预测能力 也不能检验参数是否稳定 变量间的关系是否稳健 在时间序列样本中 通常利用T1时期的观测值进行了估计 余下的T2时期的观测值进行检验 对于截面数据 可以先根据关键变量 例如家庭收入或公司销售额的大小 对数据进行了排序 然后再将数据集合分成两个部分 这里没有硬性的 快速的方法来确定T1 T2的相对大小 某些情况下 会出现一些明显的已经发生结构变化的点 如一条法规的出现 固定汇率向浮动汇率的转变或者是石油价格的冲击等 则选择该点来分割T 在没有什么特殊原因来观测结构变化时 粗略的经验是用85 90 的观测值来进行估计 余下的用于检验 邹突变点检验 邹突变点检验由邹至庄1960年提出 用于检验模型参数在样本范围内某一点是否发生变化 注意 每个子集中的观测值数目必须超过待估方程中系数的个数 分割的目的是为了检验系数向量在不同的子集中是否可以视为常数 H0 不存在突变点 检验时 考察的方程应分别拟合于每个子样本 加总每个子样本的残差平方和从而得到无约束的残差平方和 然后再用方程拟合于所有样本观测值 得到有约束的残差平方和 F统计量是有约束和无约束的残差平方和之比 而LR统计量是通过有约束和无约束条件下的方程的极大似然值计算得到 输出结果再次显示F统计量 LR统计量和相应的概率值 注意 该检验适合于由最小二乘法和两阶段最小二乘法做的回归 做邹突变检验时 选择Equation工具中的View stabilitytests chowBreakpointtest功能 在对话框中 输入突变的日期 相对于时间序列样本 或观测数目 相对于截面样本 例如 若方程由1950 1994年数据估计得到 在对话框中 键入1960 则设定了两个子样本 一个从1950 1959 另一个从1960 1994 例4 1 1985 2002年中国家用汽车拥有量 y 与城镇居民家庭人均可支配收入 x 数据见case6 画散点图后发现1996年应该是一个突变点 当城镇居民家庭人均可收入突破4838 9元之后 城镇居民家庭购买家用汽车的能力大大提高 现在用邹突变点检验法检验1996年是不是一个突变点 邹模型稳定性检验 在邹预测检验中 利用T1时期的观测值估计方程并预测余下T2时期的因变量的值 这样 会存在一个预测值和真实值之间差异的向量 若差异较小 则对估计方程毋庸置疑 若差异较大 则方程参数的稳定性值得怀疑 H0 模型是稳定的 注意 Chow预测检验适用于由最小二乘法和两阶段最小二乘法估计的回归方程 做Chow预测检验时 选择Equation工具栏中的View StabilityTests ChowForecastTest功能 在对话框中 设定预测开始的日期 且该日期必须在现有的样本观测值之内 仍以表case6为例用1985 1999年数据建立的模型基础上 检验当把2000 2002年数据加入样本后 模型的回归参数是否出现显著性变化 因为已经知道1996年为结构突变点 所以设定虚拟变量 以区别两个不同时期 用1985 2002年数据按以下命令回归 ycxd1x d1 Wald检验 Wald检验处理有关解释变量系数约束的假设 例如 假设一个Cobb Douglas生产函数已经估计为以下形式 其中Q K和已分别代表产出 资本与劳动的投入量 规摸报酬不变的假设由以下约束检验表示 Wald检验原假设的参数限制以及检验方程可以是线性的 也可以是非线性的 并且可以同时检验一个或多个约束 Wald检验的输出结果依赖于约束的线性性 在线性约束下 输出结果是F统计量 x2统计量和相应的p值 如果约束是有效的 那么F统计量应该很小 p值很大 并且约束不会被拒绝 在大多数应用中 p值和相应的F统计量应该被认为是近似值 也就是说只有当F值远大于临界值时结论才是可靠的 如果是非线性约束 则不论方程形式如何 检验结果只能是卡方统计量的近似结果和相应的近似既率 事实上 Wald检验对二阶段最小二乘法 非线性最小二乘法等建立的模型均有效 只是检验统计量有所不同EViews中 方程结果输出窗口点击View按钮 然后在下拉菜单中选择CoefficientTests Wald CoefficientRestrictions 例4 2 粮食产量 Y 通常由粮食生产劳动力 L 化肥施用量 K 等因素决定 利用线性化方法估计Cobb Douglas生产函数模型并检验参数是否满足约束条件 case4 遗漏变量检验 testadd检验 遗漏 Omitted 变量检验用以查看对现有模型添加某些变量后 新变量是否对因变量的解释有显著贡献 检验的原假设是新变量都是不显著的 检验统计量 注意 计算时都要求原模型与检验模型的观测量相同 即新变量不能在原来的样本期内含有缺失值 因此 像加入滞后变量等情况 检验是失效的 EViews中 方程结果输出窗口中选择View CoefficientTests OmittedVariables LikelihoodRatio 例4 3 续例4 2 若考虑粮食播种面积 M 对粮食产量的影响 现检验该因素是否显著 冗余变量检验 testdrop检验 冗余 Redundant 检验用以确定现有模型一个变量子集的统计显著性 即考察子集内变量的参数估计值是否与0没有显著差异 可以从方程中剔除 H0 检

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论