已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 3变量间的相关关系2 3 2生活中线性相关实例 统计 通过生活实例进一步了解最小二乘法思想 用不同估算方法描述两个变量线性相关的过程 建立线性回归方程 基础梳理 1 回归分析 对具有相关关系的两个变量进行统计分析的方法叫 回归分析是寻找相关关系中非确定性关系的某种确定性 由一个变量的变化推测另一个变量的变化的方法 称作回归方法 2 线性相关 若散点图中的点的分布从整体上看大致在一条直线附近 则称两个变量之间具有线性相关的关系 这条直线叫做 例如 1 同学学号与数学成绩间是否有相关关系 2 同学学习时间与学习成绩是否有相关关系 1 回归分析2 回归直线例 1 无 2 有 3 线性回归 对于具有线性相关关系的两个变量x与y 我们可以拟合许多条直线来表达它们之间的相关关系 而这许多直线中 最 贴近 已知n个观测点 xi yi i 1 2 3 n 的数据的直线方程称作y对x的线性回归方程 a b叫做回归系数 1 对任何给定的一组样本 xi yi i 1 2 n 是否都可以用最小二乘法建立起一个线性回归模型 思考应用 解析 对于任何给定的一组样本 xi yi i 1 2 n 都可以用最小二乘法建立起一个线性回归模型 相应地就可以得到一条回归直线 但是 这样的一条回归直线并不是总有意义的 只有当变量x与y之间确实存在某种因果关系时 其回归直线才有意义 统计学中要确定变量x和y之间是否确实存在线性相关 通常利用相关系数来检验 相关系数记作r 它能够较精确地描述两个变量之间线性相关的密切程度 当r 0时称y与x正相关 当r 0时称y与x是负相关 2 求线性回归直线方程的步骤主要有哪些 3 最小二乘法 的含义是什么 解析 设具有线性相关的两个变量之间的函数关系近似表达式为求当b a取何值时 q y1 bx1 a 2 y2 bx2 a 2 yn bxn a 2达到最小的方法称为 最小二乘法 在推导过程中两次用到了配方法 故称为 最小二乘法 自测自评 1 上列说法中错误的个数是个 任何两个变量之间一定是线性相关的 线性回归方程的拟合效果与选择数据多少无关 函数关系一定是相关关系 如果样本点只有两个 则用最小二乘法计算得到的直线方程与两点式求出的方程一致 a 1b 2c 3d 4 解析 错 答案 c 2 下表是某厂1 4月份用水量 单位 百吨 的一组数据 由散点图可知 用水量y与月份x之间有较好的线性相关关系 其线性回归直线方程是 0 7x a 则a等于 a 10 5b 5 15c 5 2d 5 25 3 已知x与y之间的一组数据如下 则y与x的线性回归方程y bx a必过点 4 回归 一词是在研究子女的身高与父母的身高之间的遗传关系时由高尔登提出的 他的研究结果是子代的平均身高向中心回归 根据他的结论 在儿子的身高y与父亲的身高x的回归方程 a bx中 b的取值范围是 求回归直线方程 针对某工厂某产品产量与单位成本的资料进行线性回归分析 跟踪训练 1 假设学生在初中和高一数学成绩是线性相关的 若10个学生初中 x 和高一 y 数学成绩如下 试求初中和高一数学成绩间的回归方程 判断两个变量间的线性相关关系并求回归直线方程 一个车间为了规定工时定额 需要确定加工零件所花费的时间 为此进行了10次试验 收集数据如下 1 y与x是否具有线性相关关系 2 如果y与x具有线性相关关系 求y关于x的回归直线方程 解析 1 画出散点图如下图 由图可知y与x有线性相关关系 2 列表 计算 跟踪训练 2 以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据 1 画出数据对应的散点图 2 求线性回归方程 3 据 2 的结果估计当房屋面积为150m2时的销售价格 解析 1 数据对应的散点图如下图所示 对已知数据进行线性回归分析 某车间为了规定工时定额 需要确定加工零件所花费的时间 为此作了四次试验 得到的数据如下 1 在给定的坐标系中画出表中数据的散点图 2 求出y关于x的线性回归方程 bx a 并在坐标系中画出回归直线 3 试预测加工10个零件需要多长时间 分析 1 将表中的各对数据在平面直角坐标系中描点 得到散点图 2 按求回归直线方程的步骤和公式 写出回归直线方程 3 利用回归直线方程分析 解析 1 散点图如右图 3 一台机器由于使用时间较长 生产的零件有一些会有缺损 按不同转速生产出来的零件有缺损的统计数据如下 1 作出散点图 2 求y关于x的线性回归直线方程 3 若实际生产中 允许每小时的产品中有缺损的零件最多为10个 那么机器的运转速度应控制在什么范围内 跟踪训练 解析 1 散点图如下 回归直线方程的应用 假设关于某设备的使用年限x和所支出的维修费用y 元 有如下的统计资料 若由资料知y对x呈线性相关关系 试求 解析 1 制表如下 跟踪训练 4 弹簧长度y cm 随所挂物体的重量x g 不同而变化的情况如下 1 画出散点图 2 求y对x的回归直线方程 3 预测所挂物体重量为27g时的弹簧长度 精确到0 01cm 解析 1 散点图如下图所示 2 采用列表的方法计算a与回归系数b 1 回归分析是由样本点寻求一条曲线 贴近 这些点的数学方法 线性回归是处理变量之间的线性相关关系的一种数理统计方法 它为生产 生活提供了一种科学的测算依据 如果两个变量线性相关 那么一定可以找到一条直线拟合该关系 关键是如何找出这样一条最佳拟合直线 即如何求得线性回归方程 利用线性回归方程对两个变量间的线性关系进行估计 实际上就是将非确定性的相关关系问题转化为确定性的函数关系进行研究 我们常用的方法就是 最小二乘法 它使得直线上的估计点与实际样本数据距离最小 回归直线方程将部分观测值所反映的规律进行延伸 是我们对有线性相关关系的两个变量进行分析和控制 依据自变量的取值估计和预报因变量值的基础和依据 有广泛的应用 因此回归直线方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 3方合伙人合同范本
- 上班路上安全协议书
- 个人与门诊合同协议
- 两个居间协议签合同
- 代签房产定购协议书
- 住房漏水矛盾协议书
- 亏损处理协议书范本
- 位采购衣服合同范本
- 产业发展帮扶协议书
- 209劳动合同范本
- CJ/T 328-2010球墨铸铁复合树脂水箅
- T/CECS 10013-2019双冷源新风机组
- 电表更名协议书
- 入团团员考试试题及答案
- 2024年佛山市顺德区公办中小学招聘教师真题
- 老年综合评估技术应用中国专家共识解读
- 营口职业技术学院2025年单独招生考试教育类题库(中职生适用)
- 【中国人寿财险湖南省分公司全面预算管理问题原因分析案例9800字】
- 2025年四川省绵阳市涪城区八年级中考一模生物试题(原卷版+解析版)
- 舌下腺囊肿护理
- 2025年古诗《游子吟》标准课件
评论
0/150
提交评论