抛物线上存在性问题的探究教案.doc_第1页
抛物线上存在性问题的探究教案.doc_第2页
抛物线上存在性问题的探究教案.doc_第3页
抛物线上存在性问题的探究教案.doc_第4页
抛物线上存在性问题的探究教案.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

抛物线上存在性问题的探究教案 一、教学目标1、通过本节课的复习,进一步提高学生运用二次函数、平行四边形、矩形、菱形、正方形等知识解决问题的能力。2能从数和形的角度探究抛物线上图形的若干综合问题二、重点和难点重点:利用抛物线上的图形的特性,如何将问题转化为基本的数学问题难点:根据题意找出能使四边形转变成平行四边形、矩形、菱形、正方形的条件。三、教学过程一、平行四边形与抛物线1、(2012钦州)如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=(1)求抛物线对应的函数解析式;(2)将图甲中ABO沿x轴向左平移到DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MNy轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形(参考公式:抛物线y=ax2+bx+c(a0)的顶点坐标为(,),对称轴是直线x=)1、解:(1)由于抛物线y=x2+bx+c与y轴交于点B(0,4),则 c=4;抛物线的对称轴 x=,b=5a=;即抛物线的解析式:y=x2+x+4(2)A(4,0)、B(3,0)OA=4,OB=3,AB=5;若四边形ABCD是菱形,则 BC=AD=AB=5,C(5,3)、D(1,0)将C(5,3)代入y=x2+x+4中,得:(5)2+(5)+4=3,所以点C在抛物线上;同理可证:点D也在抛物线上(3)设直线CD的解析式为:y=kx+b,依题意,有:,解得 直线CD:y=x由于MNy轴,设 M(t,t2+t+4),则 N(t,t);t5或t1时,l=MN=(t2+t+4)(t)=t2+t+;5t1时,l=MN=(t)(t2+t+4)=t2t;若以M、N、C、E为顶点的四边形是平行四边形,由于MNCE,则MN=CE=3,则有:t2+t+=3,解得:t=32;二、 梯形与抛物线1、已知,在RtOAB中,OAB=90,BOA=30,AB=2若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内将RtOAB沿OB折叠后,点A落在第一象限内的点C处(1)求点C的坐标;(2)若抛物线y=ax2+bx(a0)经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由1、解:(1)过点C作CHx轴,垂足为H;在RtOAB中,OAB=90,BOA=30,AB=2,OB=4,OA=2;由折叠的性质知:COB=30,OC=AO=2,COH=60,OH=,CH=3;C点坐标为(,3)(2)抛物线y=ax2+bx(a0)经过C(,3)、A(2,0)两点,解得;此抛物线的函数关系式为:y=x2+2x(3)存在因为y=x2+2x的顶点坐标为(,3),即为点C,MPx轴,垂足为N,设PN=t;因为BOA=30,所以ON=t,P(t,t);作PQCD,垂足为Q,MECD,垂足为E;把x=t代入y=x2+2x,得y=3t2+6t,M(t,3t2+6t),E(,3t2+6t),同理:Q(,t),D(,1);2.(2012玉林)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2(1)求点D的坐标,并直接写出t的取值范围(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值(3)在(2)的条件下,t为何值时,四边形APQF是梯形?.解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在RtPCQ中,由勾股定理得:PC=4,OC=OP+PC=4+4=8,又矩形AOCD,A(0,4),D(8,4)点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0t4(2)结论:AEF的面积S不变化AOCD是矩形,ADOE,AQDEQC,即,解得CE=由翻折变换的性质可知:DF=DQ=4t,则CF=CD+DF=8tS=S梯形AOCF+SFCESAOE=(OA+CF)OC+CFCEOAOE=4+(8t)8+(8t)4(8+)化简得:S=32为定值所以AEF的面积S不变化,S=32(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQAF由PQAF可得:CPQDAF,即,化简得t212t+16=0,解得:t1=6+2,t2=62,由(1)可知,0t4,t1=6+2不符合题意,舍去当t=(62)秒时,四边形APQF是梯形三、 等腰三角形、菱形与抛物线1、(2012龙岩)在平面直角坐标系xOy中,一块含60角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(1,0)(1)请直接写出点B、C的坐标:B 、C ;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中EDF=90,DEF=60),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C此时,EF所在直线与(1)中的抛物线交于点M设AE=x,当x为何值时,OCEOBC;在的条件下探究:抛物线的对称轴上是否存在点P使PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由1、解:(1)点A(1,0),OA=1,由图可知,BAC是三角板的60角,ABC是30角,所以,OC=OAtan60=1=,OB=OCcot30=3,所以,点B(3,0),C(0,),设抛物线解析式为y=ax2+bx+c,则,解得,所以,抛物线的解析式为y=x2+x+;(2)OCEOBC,=,即=,解得OE=1,所以,AE=OA+OE=1+1=2,即x=2时,OCEOBC;存在理由如下:抛物线的对称轴为x=1,所以,点E为抛物线的对称轴与x轴的交点,OA=OE,OCx轴,BAC=60,ACE是等边三角形,AEC=60,又DEF=60,FEB=60,BAC=FEB,EFAC,由A(1,0),C(0,)可得直线AC的解析式为y=x+,点E(1,0),直线EF的解析式为y=x,联立,解得,(舍去),点M的坐标为(2,),EM=2,分三种情况讨论PEM是等腰三角形,当PE=EM时,PE=2,所以,点P的坐标为(1,2)或(1,2),当PE=PM时,FEB=60,PEF=9060=30,PE=EMcos30=2=,所以,点P的坐标为(1,),当PM=EM时,PE=2EMcos30=22=2,所以,点P的坐标为(1,2),综上所述,抛物线对称轴上存在点P(1,2)或(1,2)或(1,)或(1,2),使PEM是等腰三角形四、 直角三角形与抛物线1、(2012广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式1、解:(1)令y=0,即=0,解得x1=4,x2=2,A、B点的坐标为A(4,0)、B(2,0)(2)SACB=ABOC=9,在RtAOC中,AC=5,设ACD中AC边上的高为h,则有ACh=9,解得h=如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=1的两个交点即为所求的点D设l1交y轴于E,过C作CFl1于F,则CF=h=,CE=设直线AC的解析式为y=kx+b,将A(4,0),B(0,3)坐标代入,得到,解得,直线AC解析式为y=x+3直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,直线l1的解析式为y=x+3=x则D1的纵坐标为(1)=,D1(4,)同理,直线AC向上平移个长度单位得到l2,可求得D2(1,)综上所述,D点坐标为:D1(4,),D2(1,)(3)如答图2,以AB为直径作F,圆心为F过E点作F的切线,这样的切线有2条连接FM,过M作MNx轴于点NA(4,0),B(2,0),F(1,0),F半径FM=FB=3又FE=5,则在RtMEF中,ME=4,sinMFE=,cosMFE=在RtFMN中,MN=MNsinMFE=3=,FN=MNcosMFE=3=,则ON=,M点坐标为(,)直线l过M(,),E(4,0),设直线l的解析式为y=kx+b,则有,解得,所以直线l的解析式为y=x+3同理,可以求得另一条切线的解析式为y=x3综上所述,直线l的解析式为y=x+3或y=x3五、 相似三角形与抛物线1、(2012福州)如图1,已知抛物线y=ax2+bx(a0)经过A(3,0)、B(4,4)两点(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,求出所有满足PODNOB的点P坐标(点P、O、D分别与点N、O、B对应)1、解:(1)抛物线y=y=ax2+bx(a0)经过A(3,0)、B(4,4),解得:抛物线的解析式是y=x23x(2)设直线OB的解析式为y=k1x,由点B(4,4),得:4=4k1,解得:k1=1直线OB的解析式为y=x,直线OB向下平移m个单位长度后的解析式为:y=xm,点D在抛物线y=x23x上,可设D(x,x23x),又点D在直线y=xm上,x23x=xm,即x24x+m=0,抛物线与直线只有一个公共点,=164m=0,解得:m=4,此时x1=x2=2,y=x23x=2,D点的坐标为(2,2)(3)直线OB的解析式为y=x,且A(3,0),点A关于直线OB的对称点A的坐标是(0,3),设直线AB的解析式为y=k2x+3,过点(4,4),4k2+3=4,解得:k2=,直线AB的解析式是y=,NBO=ABO,点N在直线AB上,设点N(n,),又点N在抛物线y=x23x上,=n23n,解得:n1=,n2=4(不合题意,舍去)N点的坐标为(,)方法一:如图1,将NOB沿x轴翻折,得到N1OB1,则N1(,),B1(4,4),O、D、B1都在直线y=x上P1ODNOB,P1ODN1OB1,点P1的坐标为(,)将OP1D沿直线y=x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,)六、抛物线中的翻折问题1、(2012天门)如图,抛物线y=ax2+bx+2交x轴于A(1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将CPQ沿CP翻折,点Q的对应点为Q是否存在点P,使Q恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由1、解:(1)抛物线y=ax2+bx+2经过A(1,0),B(4,0)两点,解得:y=x2+x+2;当y=2时,x2+x+2=2,解得:x1=3,x2=0(舍),即:点D坐标为(3,2)(2)A,E两点都在x轴上,AE有两种可能:当AE为一边时,AEPD,P1(0,2),当AE为对角线时,根据平行四边形对顶点到另一条对角线距离相等,可知P点、D点到直线AE(即x轴)的距离相等,P点的纵坐标为2,代入抛物线的解析式:x2+x+2=2解得:x1=,x2=,P点的坐标为(,2),(,2)综上所述:p1(0,2);p2(,2);p3(,2)(3)存在满足条件的点P,显然点P在直线CD下方,设直线PQ交x轴于F,点P的坐标为(a,a2+a+2),当P点在y轴右侧时(如图1),CQ=a,PQ=2(a2+a+2)=a2a,又CQO+FQP=90,COQ=QFP=90,FQP=OCQ,COQQFP,QF=a3,OQ=OFQF=a(a3)=3,CQ=CQ=,此时a=,点P的坐标为(,),当P点在y轴左侧时(如图2)此时a0,a2+a+20,CQ=a,PQ=2(a2+a+2)=a2a,又CQO+FQP=90,CQO+OCQ=90,FQP=OCQ,COQ=QFP=90,COQQFP,QF=3a,OQ=3,CQ=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论