




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数在闭区间上的最值问题动轴定区间 动区间定轴 1 练习 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 4 若x 求函数f x 的最值 2 练习 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 解 画出函数在定义域内的图像如图 对称轴为直线x 1由图知 y f x 在 2 0 上为减函数 故x 2时有最大值f 2 5x 0时有最小值f 0 3 3 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 解 画出函数在定义域内的图像如图 对称轴为直线x 1由图知 y f x 在 2 4 上为增函数 故x 4时有最大值f 4 5x 2时有最小值f 2 3 4 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 解 画出函数在定义域内的图像如图 对称轴为直线x 1 由图知 x 时有最大值x 1时有最小值f 1 4 5 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 4 若x 求函数f x 的最值 解 画出函数在定义域内的图像如图 对称轴为直线x 1 由图知 x 时有最大值x 1时有最小值f 1 4 6 例1 已知函数f x x2 2x 3 4 x 1 x 2 0 2 x 2 4 3 x 思考 通过以上几题 你发现二次函数在区间 m n 上的最值通常在哪里取到 7 总结 求二次函数f x ax2 bx c在 m n 上上的最值或值域的一般方法是 2 当x0 m n 时 f m f n f x0 中的较大者是最大值 较小者是最小值 1 检查x0 是否属于 m n 3 当x0 m n 时 f m f n 中的较大者是最大值 较小者是最小值 8 思考 如何求函数y x2 2x 3在x k k 2 时的最值 解析 因为函数y x2 2x 3 x 1 2 4的对称轴为x 1固定不变 要求函数的最值 即要看区间 k k 2 与对称轴x 1的位置 则从以下几个方面解决如图 9 例 求函数y x2 2x 3在x k k 2 时的最值 10 当k 2 1即k 1时 f x min f k 2 k 2 2 2 k 2 3 k2 2k 3 f x max f k k2 2k 3 11 当k 1 k 2时即 1 k 1时 f x min f 1 4 当f k f k 2 时 即k2 2k 3 k2 2k 3即 1 k 0时 f x max f k k2 2k 3 当f k f k 2 时 即k2 2k 3 k2 2k 3即0 k 1时 f x max f k 2 k 2 2 2 k 2 3 k2 2k 3 12 当k 1时 f x max f k 2 k2 2k 3 f x min f k k2 2k 3 13 例 求函数y x2 2x 3在x k k 2 时的最值 当k 1时 当 1 k 0时 f x max f k k2 2k 3 当0 k 1时 f x max f k 2 k2 2k 3 f x min f 1 4 f x min f 1 4 f x min f k 2 k2 2k 3 f x max f k k2 2k 3 当k 1时 f x max f k 2 k2 2k 3 f x min f k k2 2k 3 14 例 求函数y x2 2x 3在x k k 2 时的最值 评注 例1属于 轴定区间动 的问题 看作动区间沿x轴移动的过程中 函数最值的变化 即动区间在定轴的左 右两侧及包含定轴的变化 要注意开口方向及端点情况 15 例2 若x 求函数y x2 ax 3的最小值 16 例2 若x 求函数y x2 ax 3的最小值 17 例2 若x 求函数y x2 ax 3的最小值 18 例2 若x 求函数y x2 ax 3的最小值 当即a 2时 解 19 例3 若x 求函数y x2 ax 3的最小值 2 当即 2 a 2时 y的最小值为f 20 例2 若x 求函数y x2 ax 3的最小值 3 当即a 2时 函数在 1 1 上是减函数 21 例2 若x 求函数y x2 ax 3的最小值 当a 2时 f x min f 1 4 a 当 2 a 2时 当a 2时 f x min f 1 4 a 22 例2 若x 求函数y x2 ax 3的最小值 评注 例2属于 轴动区间定 的问题 看作对称轴沿x轴移动的过程中 函数最值的变化 即对称轴在定区间的左 右两侧及对称轴在定区间上变化情况 要注意开口方向及端点情况 23 练习 已知x2 2x a 4在x 0 2 上恒成立 求a的值 解 令f x x2 2x a它的对称轴为x 1 f x 在 0 2 上单调递增 f x 的最小值为f 0 a 即a 4 24 1 已知y x2 ax 3 x 1 1 求y的最大值 练一练 25 课堂小结 1 闭区间上的二次函数的最值问题求法2 含参数的二次函数最值问题 轴动区间定轴定区间动 核心 区间与对称轴的相对位置 注意数形结合和分类讨论 26 变式 已知函数y x2 2x 2 函数的值域为 求m的范围 27 已知函数当时 求函数的最大值 练习 28 29 综上可知 30 问题三 设函数f x x2 2x 2在区间 t t 1 上的最小值为g t 求g t 的解析式 解 f x x 1 2 1 对称轴为x 1 2 当0 t 1时 则g t f 1 1 1 当t 1时 则g t f t t2 2t 1 3 当t 1 1 即t 0时 则g t f t 1 t2 1 31 思考 二次函数f x x2 2x 3在 3 a a 3 上的最值是多少 fmin f a a2 2a 3fmax f 3 12 32 f x x2 2x 3 x 3 a a 3 fmin f 1 4fmax f 3 12 fmin f 1 4fmax f a a2 2a 3 33 例题讲解 例1设函数f x x2 2x 3 3在区间 t t 1 上的最小值为g t 求g t 的解析式 分析 解 f x x 1 2 4 3 对称轴为x 1 2 当0 t 1时 则g t f 1 4 3 1 当t 1时 则g t f t t2 2t 3 3 3 当t 1 1 即t 0时 则g t f t 1 t2 4 3 34 例2求f x x2 ax a在区间 1 1 上的最值 分析 解 f x x 2 a 对称轴为x 1 若 即a 2时 f x min f 1 1 2a f x max f 1 1 4 若 即a 2时 f x min f 1 1 f x max f 1 1 2a 2 若 1 0 即 2 a 0时 f x min f a a2 4 f x max f 1 1 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安外国语大学《服装工业样板》2023-2024学年第二学期期末试卷
- 天津城市职业学院《电机原理与电机拖动》2023-2024学年第二学期期末试卷
- 河南机电职业学院《工程伦理1》2023-2024学年第二学期期末试卷
- 新疆司法警官职业学院《中学教案分析实践》2023-2024学年第二学期期末试卷
- 山东电力高等专科学校《高分子基础》2023-2024学年第二学期期末试卷
- 长沙文创艺术职业学院《经济法实务》2023-2024学年第二学期期末试卷
- 湖南高尔夫旅游职业学院《化工原理(一)》2023-2024学年第二学期期末试卷
- 深圳信息职业技术学院《现代大地测量学》2023-2024学年第二学期期末试卷
- 江西卫生职业学院《硬件描述语言与数字系统设计》2023-2024学年第二学期期末试卷
- 东莞城市学院《单片机课程设计》2023-2024学年第二学期期末试卷
- DZ∕T 0221-2006 崩塌、滑坡、泥石流监测规范(正式版)
- 医学检验项目管理制度
- DBJ-T 15-98-2019 建筑施工承插型套扣式钢管脚手架安全技术规程
- 鸢飞鱼跃:〈四书〉经典导读智慧树知到期末考试答案章节答案2024年四川大学
- MOOC 统计学-南京审计大学 中国大学慕课答案
- 高考作文标准方格纸-A4-可直接打印
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 毛泽东诗词鉴赏
- 肛肠科的中医特色护理【医院中医护理及保健知识】
- 《高温熔融金属吊运安全规程》(AQ7011-2018)
- 商场纠纷和解书
评论
0/150
提交评论