大学物理难题集ppt课件_第1页
大学物理难题集ppt课件_第2页
大学物理难题集ppt课件_第3页
大学物理难题集ppt课件_第4页
大学物理难题集ppt课件_第5页
已阅读5页,还剩110页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 质量为m的小球可沿半径为r的圆形环轨道运动 环面为水平面 小球带有固定的正电荷q 设在以环形轨道为其截面的柱体内有均匀的随时间t变化的磁场 磁感应强度B的方向垂直于环面 已知t 0时 B 0 小球静止于环上 0 t T时 B随时间t线性增长 t T时 B B0 设重力和摩擦力可忽略 试求 在0 t T时间内小球运动状态及小球对轨道的作用力 解 在0 t T时间内 在环上产生的感生电场为 感生电场力产生的切向加速度为 小球受的磁场力指向圆心 圆环对小球的法向支持力为N 则 2 半径为1cm的两根足够长的平行导线相距20cm 在两导线中有20A的方向相反的电流 1 若将两导线分开到40cm 试求磁场对单位长度导线所作的功 2 分开两导线时 单位长度的磁能改变了多少 增加还是减少 说明能量的来源或去向 解 1 当两导线分开到相距40cm时 磁场对单位导线作的功为 2 单位长度导线的磁能改变可由自感磁能的改变求得 能量的来源电源做功 3 把10 F的电容器充电充到100V 再通过100 的电阻和0 4H的电感串联放电 试问 1 此时电路处理于什么状态 2 为使电路处理于临界阻尼状态 应再串联或并联一个多大的电阻 或者应再串联或并联一个多大的电容 解 1 这是一个RCL串联的放电电路 电路的微分方程为 上述微分方程的特征方程为 由题目所给数据 有 2 设电路处于临界阻尼状态时的总电阻为R 则 应再串联的电阻为100 设电路处于临界阻尼状态时的总容为C 则 应再并联的电容为 4 在 d0为常数 其它区域均为真空 若在x 2d处将质量为m 电量为q 0 的带电质点自静止释放 试问经过多少时间它能到达x 0的位置 解 由高斯定理可得电场分布 带电质点由x 2d运动到x d过程中 方向向左 带电质点由x d运动到x 0过程中 带电质点在线性恢复力作用下作简谐振动 简谐振动的初始条件为 初相位在第一象限 带电质点由x d运动到x 0过程中 所需的时间为满足方程 带电质点由x 2d运动到x 0过程中所需的时间为 5 两块长为a宽为b的平行导体板在制成电容器时稍有偏 使两对宽度一过相距d 另一宽过相距为d h 且h d 若此电容器内充满了相对介电常数为 r的电介质 试求电容器的电容 解 两块间的等势面是一系列不同 对应的平面 而电场线则是一系列以o点为中心的圆弧线 每条线上的电场强度大小近似相同 不同圆弧线上的电场强度不同 导体板上X到x dx窄条上的电量为 若 若 电容的一级近似 6 抛物线形状的无穷长导线载有电流I 若焦点到顶点的距离为a 试求焦点处的磁感应强度B 解 抛物线方程 作变量替换 7 如图所示 ABCDA是闭合导体回路 总电阻为R AB段的一部分绕成初始半径为r0的小圆圈 圆圈所在区域有与平面垂直的均匀磁场B 回路的B端固定 C D为自由端 A端在沿BA方向的恒力F的作用下向右移动 从而使圆圈缓慢缩小 设在缩小过程中 线圈始终保持圆的形状 并设导体回路是软的 阻力不计 试求此圆圈从初始半径r0到完全闭合所需的时间T 解 设在F的作用下 A在dt时间内右移dx 相应的圆圈半径缩小 dr 则 圆圈内产生的感应电动势 产生的热能为 能量守恒得 8 如图 在一半径为r 质量为m 可以无摩擦地自由转动的匀质绝缘圆盘中部装有一纲线螺线管 其半径为a 沿轴线方向单位长度上绕有n匝线圈 线圈中通以稳恒电流I 在圆盘的边缘上均匀地嵌着N个等量正电荷q的小球 设开始时 螺旋管中的电流为I 圆盘静止 然后将电流切断 试求圆盘转动的角速度 解 设切断电流后 在 t时间内从I减少为零 在此过程中电流为i t 产生的磁场为 解产生的感应电场为 感应电流的方向与原电流方向一致 在半径为r的圆周上的N个小球所受的总的切向力为 它对转轴形成的力矩为 由刚体的角动量定理可得 9 静电天平可测定静电电势差 如图 一空气平板电容器 两极板的面积均为S 相距x 下板固定 上板接到天平的左端 当电容器没充电时 天平刚好平衡 若把电压V加到电容器的两极板上 则需在天平的右端加上质量为m的法码 天平才能平衡 设S 10cm2 x 1mm m 0 01g 求所加的电压V 解 电容器内部的电场强度为 每个极板产生的电场强度为和电场力分别为 天平平衡量时 10 热核反应的点火温度 轻原子核结合成较重的原子核的过程叫做核聚变 核聚变能释放巨大能量 实现核聚娈的困难在于两核靠近时互相排斥 只有在极高温度下 轻核所获得的热运动动能足以克服彼此之间的库仑力才能发生核聚变 故称为热核反应 1 一个质子要有多大的动能 用eV表示 才有可能与另一质子相接触 2 平均热运动的动能达到这一数值时 温度需要多高 这一温度称为点火温度 考虑到粒子的速率遵从Maxwell分布律 因而在较低温度下已有少数粒子能具有所需的动能 所以大体上1亿度时能够实现点火 11 静电透镜在示波器 电视显像等真空器件中都需要将电子束聚焦 使在荧光屏上形成清晰的光点 这时常采用静电透镜来达到此目的 静电透镜是由具有旋转对称形状的金属电极系统制成的 其中每个电极都有一定的电势 可以产生旋转对称的静电场 这种电场对带电粒子的运动轨迹发生折射作用 与光学透镜对光线的作用相似 故这样的电极系统称为静电透镜 光栏为圆金属片 解 单光栏静电透镜的小孔两侧轴上的电场强度值不等 但在离开小孔稍远处场强值可看作常数 左侧为E1 右侧为E2 d d 设离轴线为r的电子 通过圆孔时 沿与轴线垂直的方向上的径向电场为Er 则在径向电场作用范围内 电子受到径向力Fr作用 设电子的径向速度为Vz 则在通过轴向距离dz期间 径向速度的增量为 设电子的径向初速度为0 通过圆孔后径向速度的增量为 由于电子速度很大 轴向速度变化很小 故当作常数 d d 以外的区域轴向场强可视为0 设在xd区 电场强度分别为E1和E2 为了求上式积分 取如图所示的圆柱面 利用高斯定理有 电子通过圆孔后的偏转角 则 电子到达轴线上F点 F点离开圆孔的中心距离为 与电子入射时离开轴线的距离r无关 因此平行于入射到圆孔的电子束 全都会聚在F点 就像一束光线通过光学透镜时聚焦在焦点上一样 F就是静电透镜的焦点 f就是焦距 12 静电泄漏与防止静电灾害当静电荷在带电体上迅速聚集而得不到快速泄漏时 可能因为产生静电放电而造成危害 设均匀介质的介电常数为 电导率为 试求它所带电量因泄漏而衰减的规律 并讨论如何达到快速泄漏的要求 解 设带电体的电量为Q 包围此带电体是曲面为S 由高斯定理得 此曲面泄漏的电流强度为 电导率越大 放电越快 在 有的规程强调规定弛豫时间小于0 2秒 以保证快速泄漏 13 平行板电极真空二极管电流分布在极板间距为d的平行板间加上电压V 两极板间抽成真空 电子热阴极 负阴极 逸出 在电场力作用下向阳极 正极 运动而形成电流 求两板间的电势分布及电流密度 解 两板间有电子所形成的空间电荷 两板间的电场不是均匀电场 设距阴极为x处的电子数密度为n x 电势为 x 并取在阴极处 0 0 阳极处 d U 在任一点处的电子的速度v满足方程 取高为dx的圆柱体作高斯面 由高斯定理可知板间的场强E满足方程 利用关系式 电势满足的微分方程 试探法得以下方程上述微分方法 利用边界条件x 0可得 0 0 利用边界条件x d可得 0 U 电流密度与电压不成正比 这种平行板二极管 欧 定律不适用 14 平行磁控管 如图电子由静止出发 在平行板电容器的电场力作用下由负极向正板板加速前进 与此同时 加一匀强磁场B垂直于电场方向 结束使电子沿曲线轨道运动 问已给极板间的电压V与板间距离d 磁感应强度B多大时 电子恰好不能到达正极板 这是用磁场控制以使极板间电流被截止的平行磁控管的原理 解 取如图所示坐标系 由 1 2 得 t 0 vy 0 当磁场B增大到电子恰好不能到达正极板时 应有y d时 Vy 0 由 4 5 得 当磁场大于以上B0值时 电子将回到负极板上 而当小于B0时 电子到达正板板而在两板间形成电流 15 磁带录音与放音 磁带 录音磁头 磁记录是一项广泛使用的信息技术 它利用了铁磁材料的特性与电磁感应定律 以磁带录音与放音为例 用涂敷铁磁粉的磁带来记录声音信息 录音时 录音磁头的线圈内通以由输入的音频信号经放大后转化成的电流信号 当磁带以恒定的速度通过录音磁头的气隙下时 磁粉被磁化 磁化强度与该时刻的信号电流成正比 于是电流信息 从而声音信息 就存贮在磁带上 放音时 磁带以同样物速度通过磁头的气隙下时 磁粉 磁的强强弱变化引起放音磁头内磁场的变化 通过电磁感应 在输出线圈中产生同步变化的电流 经放大再转化为声频信号 试分析磁带的电磁学原理 录音与放音磁头要用磁导率比较大的而待 软磁材料 以使磁磁头的磁化强度较大 且与输入 输出电流同步变化 磁带上的磁粉则要用 磁和矫顽力都比较大的硬磁材料 以利于存贮信号 为保证磁头中磁感应强度值的变化与电流变化成正比 以避免失真 可在输入录音信号的同时 输入一个等幅振荡的电流 以使信号只在磁化曲线的直线部分变化 录音时 气隙中磁场与磁带上的磁化强度与信号电流成正比 则当磁带移动时 磁化强度M沿磁带的分布为 放音时 磁带上的磁化强度与信号电流成正比 则当磁带移动时 磁化强度M沿磁带的分布为 若放音磁头有N匝线圈 铁芯截面积为A 则全磁通 线圈中的感生电动势为 输出电流为 为了抹去磁带中录入的信息 只要在磁带通过时 在磁头的线圈内通以等幅振荡电流就可以了 这就是消音 16 恒定磁场中下落的圆环一个半径为r 横截面积为A的圆环是由密度为d 电阻率为 的金属制成的 把金属圆环放到磁感应强度值为B的辐射状磁场 B的方向垂直于圆环的轴线 如图所示 分析圆环在这恒定磁场中下落的运动情况 解 圆环下落的瞬时速度为V时 由电磁感应定律可知 圆环中的感应电动势为 感应电流 安培力 其中圆环的质量 由第二定律得 终极速度 积分得 下落距离 17 磁力悬浮如图 在铁芯顶端 上一个小铝环 当线圈中通以220v的交流电时 铝环便悬浮起来 试用电磁感应理论说明 解 设稳定后 原线圈中的电流强度为 铝环中的感生电流强度为I则通过铝环所包围面积的磁通量为 式中M为互感系数 L为自感系数 铝环电阻为R 则i满足微分方程 当达到稳定状态时电流i将与交流电频率相同的角频率作周期性的变化 为求稳定状态下的电流I 可求微分方程的特解 代入微分方程 可解得 铝环中的感生电流的幅值与I0和M均成正比 但它的相位与原线圈中电流的相位相差 讨论两种情况 1 铝环的电阻很小 确切地说 电阻R比感抗 L小得多 这时 这时原线圈与铝环中的电流方向相反 互相排斥 当斥力能够平衡它所受到的重力时 铝环就能悬浮起来 若斥力很大 会出现 环 现象 2 铝环的电阻R不能忽略 则 在 2和 之间 这时i的方向与I的方向 时而相同 时而相反 但在一个周期内相反的时间大于相同的时间 平均说来 相互排斥力胜过相互吸引力 铝环就悬浮在空中 只要铝环电阻比较小 而交流电的频率又较大 总能出现悬浮现象 由以上讨论可知 悬力悬浮是自感和互感共同作用的结果 不考虑自感 是不能解释磁力悬浮现象的 18 电磁制动器如图所示的电磁制动器是由非磁性的金属圆盘和放生垂直于圆盘的磁场的磁铁 没画出 组成 当圆盘转动时 因电磁感应而使圆盘受到阻力矩的作用 从而使其转速减慢直至停止不考虑摩擦等其它阻力的影响 1 求阻力矩的M的近似表达式 2 开始制动后经过多长时间 圆盘的角速度减小到原来的百分之一 解 1 在圆盘上沿径向长度为a的线段内因切割磁感应线而产生的感应电动势为 小金属块的电阻为 沿径向流过这一块金属的感应电流为 安培力 制动力矩 2 由转动定律得 角速度减到1 100 0时所需要的时间 磁场子越强 磁场子覆盖面离轴越远 制动就越快 19 电磁异步驱动如果使磁铁所放生的磁场垂直地通过金属圆盘 则当磁铁转动时 将因电磁感应而驱使金属圆盘作同方向转动 同样 若磁场相对于金属线框作平行于线框平面的移动 也将驱使金属线框沿同方向的移动 以上现象称为电磁驱动 以金属线框驱动为例说明异步驱动的原理 如图 设矩形线框abcd质量为m 其回路电阻为R 在t 0时刻 线框一边ad与磁场边界重合 ad边长度为L 磁场务右移动速率为Vb 若线框移动速度为V 试证明 V Vb 解 设线框ad边与磁场边界重合时为计时零点 经时间t 磁场向右移动距离Vbt 线框向右移动距离为x 则在时刻t 通过线框的磁通量为 则电磁感应定律 感应电动势的数值为 感应电流为逆时针方向 安培力方向向右 线圈运动满足动力学方程 考虑初始条件对上式积分得 20 高频感应加热处在交变磁场中的金属块 由于变化磁场放生的感应电动势在金属块中引起涡旋状感生电流 利用涡流所释放出的焦耳热来加热金属块 这就是高频感应炉的工作原理 如图 将一个直径为D 高为h的圆柱形金属块放在高频感应炉中加热 设感应炉线圈产生的磁场是均匀的 磁感应强度的方均根为B 频率为f 金属柱的轴平行于磁场 其电导率为 设金属是非磁性材料且涡电流产生的磁场可以忽略 试证明在金属柱内产生的平均热功率为 解 考虑半径为r 厚度为dr的一个薄圆筒 如图所示 筒中的磁通量为 该薄圆筒的电阻 沿圆周方向 为 该薄圆筒内涡流产生的瞬时热功率为 平均热功率为 式中 21 电子感应加速器电子感应加速器在科学研究 工业生产以及医疗卫生事业等方面都得到了广泛的应用 其结构如图a所示 在电磁铁两极间有一个环形真空室 在交变电流的激励下 两极间出现交变的磁场 某一瞬间的磁感应线如图b所示 这交变磁场又激发一感生电场 从电子枪射入真空室的电子受到两个力的作用 一个是沿切线方向的感生电场 它使得电子不断加速 另一个沿径向的磁场力 它充当向心力 因此电子能保持在环形真空室内不断地作圆周运动 1 电子感应加速器中 电子被加速的时间有多久 电子能获得多大能量 2 要使电子维持在恒定的圆形轨道上加速 磁场的分布应该满足什么条件 3 若电子加速的时间是4 2ms 电子轨道内最大磁通量为1 8Wb 试求电子沿轨道绕行一周平均获得的能量 如果电子最后获得的能量为100MeV 电子绕行了多少周 如果电子轨道半径为84cm 电子运行的路程是多少 解 1 在磁场变化一个周期中 只有1 4的周期内才能满足磁场力为电子提供向心力和电子在圆轨道上被加速这样两个基本要求 2 要维持电子在环形真空室的恒定圆形轨道上加速 应该使向心力随电子的速率增加而相应增加 由此可以推导出磁场分布情况所满足的条件 设半径为r的圆周内磁感应强度平均值为 则由电磁感应定律可知感应电动势为 电生电场强度为 另一方面 由动量定理 在dt时间内 电子动量增量为 积分得 对于在半径为r的轨道上运动的电子有 由 2 3 得 电子能在一个稳定的轨道上运动 磁场分布满足的条件 每一时刻轨道上磁感应强度的值必须等于轨道内磁感应强度平均值的一半 这在设计电磁铁时所要求的 3 电子 行一周获得的动能 最后获得的动能100Mev 它线行的圈数为 期间电子行的路程为 22 感应电动机中的旋转磁场 利用三相交流电可以产生旋转磁场 如图所示 将三相交流电分别通以彼此成120度的线圈AA1 BB1和CC1中 在这三组线圈中将产生磁场B1 B2和B3 证明 三者的矢量叠迭给出一个大小不变但以恒定角速度放置的磁感应强度 称为旋转磁场 总磁感应强度B的大小为 B矢量与y轴的夹角为 因此合磁场以恒定的角速度旋转 如果在这样的旋转磁场中放一个笼子 其转轴垂直于旋转磁场平面 则当磁场旋转时 转子中将产生感应电流 转子将跟着旋转 这就是感应电动机的原理 但转子的转速必小于旋转的磁场 与电磁异步驱动 23 电容器的充放电过程 充电 时间常数 RC大充电时间长 放电 放电时间 24试用Maxwell速度分布律计算每秒碰到单位面积器壁上的气体分子数 已知速度分布律如下 解 取直角坐标xyz 在垂直于x轴的器壁上取一小块面积dA 设单位体积内的分子数为n 则单位体积内速度分量在vx vx dvx区间内的分子数为 在该速率区间内的分子数在dt时间内能够与dA相碰的分子数为 因此每秒碰到单位面积器壁上的分子数为 因此每秒碰到单位面积器壁上的分子数为 25试用Maxwell速率分布律证明平动动能在 d 内分子数占总分子数的百分比为 并根据上式求分子平动动能的最概然值和平均值 解 分子平均平动动能为 如图 瓶内盛有气体 一横截面为A的玻璃管通过瓶 插入瓶内 玻璃管内放有一质量为m的光滑小球 设小球在平衡位置时 气体的体积为V 压强为P P0 mg A 其中P0是大气压强 现将小球稍向下移运 然后放手 则小球将以周期T在平衡位置附近作简谐振动 假定在小球上下振动的过程中 瓶内气体进行的过程 瓶内气体进行的过程可看出准静态绝热过程 试证明 小球的振动周期为 解 小球振动过程气体被压缩或膨胀 此过程当作绝热过程 小球受恢复力的作用 F为准弹性力 27 宽L的河流 流速与离岸距离成正比 已知两岸处的流速为零 河中心的速度为v0 一小船以恒定的相对速度Vr垂直于水流从一岸驶向另一岸 在离岸L 4处因故突然掉头 以相对速度vr 2垂直于水流驶回本岸 1 试求小船的运动轨道 2 小船返回本岸时离原出发点的距离是多少 解 设如图坐标系 水流速度 船的相对速度 船的绝对速度 X 0 y 0c 0 这是一条抛物线 在离离岸L 4处 船的坐标 返航时船的绝对速度 X1和y1代入上式得 这也是一条抛物线 回到本岸时 y 0 故离原出发点距离为 28 如图 a 所示 在固定不动的圆柱体上绕有绳索 绳的两端挂大小两桶 其质量分别M 1000kg和m 10kg 绳与圆柱体之间的摩擦系数为 0 05 绳子的质量不计 试问为使两桶静止不动 绳至少需绕多少圈 1解 当绳与柱体之间的摩擦力为最大静摩擦力时 圈数最少 取一小段绳子进行受力分析得下列方程 因为 忽略高级小量 设绳绕n圈 29设空气对抛体的阻力与抛体的速度成正比 即 K为比例系数 抛体的质量为m 初速为 抛射角为 求抛体运动的轨迹方程 解取如图所示的平面坐标系 当阻力很小时 上式可近似为 飞船登月 30 一质量的登月飞船 在离月球表面高度处绕月球作圆周运动 飞船采用如下登月方式 当飞船位于点A时 它向外侧短时间喷气 使飞船与月球相切地到达点B 且OA与OB垂直 飞船所喷气体相对飞船的速度为 已知月球半径 在飞船登月过程中 月球的重力加速度视为常量 试问登月飞船在登月过程中所需消耗燃料的质量是多少 解设飞船在点A的速度 月球质量mM 由万有引力和牛顿定律 得 得 当飞船在A点以相对速度向外喷气的短时间里 飞船的质量减少了 m而为 并获得速度的增量 使飞船的速度变为 其值为 质量在A点和B点只受有心力作用 角动量守恒 飞船在A点喷出气体后 在到达月球的过程中 机械能守恒 即 于是 而 31 如图 飞船绕地球作圆周运动 离地面的高度h 800Km 轨道半径r0 R h 速度v0 3 104km h 经过短暂的沿矢径向外侧喷气 飞机获得了指向地心的的附加速度vr 800km h 其轨道变为椭圆 设喷气后飞船的质量可看作不变 试求 飞船椭圆轨道的近地点和远地点 解 飞船作圆周运动 设喷气后飞船在椭圆轨道上的近 远 地点的速度为v 离地心的距离为r 角动量守恒 有 设喷气后飞船在椭圆轨道上机械能守恒 有 有以上三式得 r的两个根为 32 静电除尘不少部门在生产过程中会产生大量的烟尘 处理不当命运产生严重污染 因此除尘就成为现代工业生产中迫切需要解决的一个问题 在多种除尘方法中 电除尘技术自20年代问世以来 由于具有除尘效率高 电能消耗小 处理气量大能处理高温及有害气体等优点 已被越来越多的部门所采用 其效率可达99 以上 如首钢在烧结 冶炼 电力等生产环节上使用了大开型静电除尘器 一 静电除尘机理及除尘器的基本结构 静电除尘是利用气体放电的电晕现象 使荷电尘粒在电场力作用下趋向集尘极 从而达到除尘的目的 大致可分为四个部分 1 气体电晕放电 1 气体电晕放电当施加电压在临界电晕电压和临界击穿电压之间时 放电极附近形成强电场 气体电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论