



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章 平行四边形4. 多边形的内角和与外角和(一)广东省茂名市电白区第二中学一学生学情三角形的边、顶点、内角、三角形的内角和定理等内容学生已经学过,应该基本掌握。学生在探索多边形内角和时,便会很容易想到剪切拼接等把多边形转化成三角形等方法,但是还没形成转化化归思想。因此需要在教学中有意识的引导转化化归思想,形成思维模式。二教学任务本节内容是三角形,四边形以及多边形相关内容的延展与扩展,在探索学习过程中三角形紧密联系,从三角形的内角和到多边形的内角和环环相扣。前面的知识为后边的知识做了铺垫,联系性较强。教材中也提到现实情境,“想一想”, “议一议”等内容,在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,发展学生的合情推理能力。教学目标【知识与技能】掌握多边形内角和定理,感受转化与化归的数学思想。【过程与方法】经历质疑、猜想、归纳等一系列的探索过程,发展学生的推理能力,积累数学探索经验,在探索中学会与人合作,学会交流自己的思想和方法【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,感受数学与生活的密切关系,使得学生喜爱数学,热爱数学。教学重难点【教学重点】探索多边形内角和定理。【教学难点】理解多边形定义;多边形内角和公式的推导;转化的数学思维方法的渗透三教学过程本节课分成八个环节:第一环节情景引入第二环节复习回顾第三环节新知探索第四环节巩固练习第五环节拓展延伸第六环节思维升华第七环节课堂小结第八环节 作业布置第一环节情景引入上图中,广场中心是一个五边形,你能想办法求出五个内角的和吗?是怎么做的?能说出其中的道理吗?目的:引起学生的注意,激发学生的好奇心,提高学生注意力第二环节复习回顾在回答上面的问题之前,先请同学们回答以下问题:1 什么是三角形?也就是三角形的定义。2仿照三角形定义,你能学着给四边形、五边形边形下定义吗?3结合图形认识多边形的顶点、边、内角及对角线。目的:对概念分析和归纳,培养学生的口头表达能力和语言组织能力。同时渗透类比思想。4三角形的内角和是多少度?你是怎么得出的?用量角器度量:分别测量出三角形三个内角的度数,再求和。拼角:将三角形两个内角裁剪下来与第三个角拼在一起,可组成一个平角。目的:学生分组,利用度量和拼角的方法验证三角形的内角和,为四边形内角和的探索奠定基础。第三环节 新知探索1在回答五边形的内角和之前,请先思考一下,四边形的内角和是多少?你又是怎样得出的?1度量 ; 2拼角; 3将四边形转化成三角形求内角和。目的:学生先通过度量、拼角两种方法,猜想得出四边形的内角和是360,然后引导学生利用分割的方法,将四边形分割成两个三角形来得到四边形的内角和,进一步渗透类比,转化的数学思想。2在四边形内角和的探索过程中,用到了几种方法,你认为哪种方法好?请讲述你的理由。度量法:不精确;拼角法:操作不方便;当多边形边数较大时,度量法、拼角法都不可取。第三种方法:精确、省事且有理论根据。目的:通过几种方法的展示,比较几种方法的优劣,为五边形内角和的探索提供最简捷的方法。3根据四边形的内角和的求法,你能否求出五边形的内角和呢?学生动手实践,小组讨论、交流,寻找解答方法,并共同进行归纳总结。估计学生可能有以下几种方法:方法1:如图1,连结AD、AC,五边形的内角和为:3180=540。方法2:如图4,在五边形内任取一点O,连结OA、OB、OC、OD、OE,则五边形内角和为:5180-360=540。小结:纵观以上各种证明思路,其共同点是通过图形分割,把五边形问题转化为熟悉的三角形、四边形问题来解决。目的:由于四边形的内角和易求得,这里采用略讲,而着重研究求五边形的内角和。在课堂上应该留给学生充足的时间讨论、交流,寻求多种不同的分割方法来得出五边形的内角和。这既符合新课程教学理念,又符合学生的认知规律和年龄特征,同时渗透转化思想。4小组合作,完成下面的表格。(课件出示讨论结果)5从表格中你发现了什么规律?从边形的一个顶点可以引出条对角线,把边形分成个三角形。从而得出:边形的内角和是。目的:在数学学习中,培养学生善于总结规律,构建知识体系是培养数学能力的一项重要内容,这样不仅使学生把本节课所学的知识形成一个完整的知识体系,而且进一步理解了多边形的内角和公式中的的来历,更有利于培养学生善于归纳、总结的数学习惯和能力。第四环节巩固练习 1如图6-24,四边形ABCD中,A+C=180,B与D有怎样的关系?2一个多边形的内角和为1440,则它是几边形?3一个多边形的边数增加1,则它的内角和将如何变化?结论:多边形每增加一条边,它的内角和增加180目的:通过本组练习题的训练,既巩固了新知,又训练了学生思维的灵活性与开阔性。同时在分组交流的过程中,学生又感受到了合作的重要性,体验到了成功的快乐,增强了学生的自信心。第五环节拓展延伸1观察下图中的多边形,它们的边、角有什么特点?正多边形定义:在平面内,每个内角都 、每条边也都 的多边形叫做正多边形。目的:学生分组动手实践,通过度量和叠合,感知正多边形的特征(每个角都相等,每条边都相等),从而使得正多边形的定义的得出水到渠成。2议一议:一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?目的:通过辨析,进一步理解正多边形的定义。3练一练:正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?正边形的内角是多少度?一个正多边形的每个内角都是150,求它的边数 ?目的:本组练习的设计,不仅巩固了多边形内角和公式的应用,进一步理解了正多边形的定义,而且通过第题的一题多解,培养学生的发散思维,引出下一课时“探索多边形的外角和”的学习,激发学生预习下一课时的兴趣,培养学生良好的学习习惯。第六环节思维升华议一议: 剪掉一张长方形纸片的一个角后,纸片还剩几个角?这个多边形的内角和是多少度?与同伴交流.目的:引导学生在探究实践的过程中,真正理解和掌握数学的知识、技能和数学思想方法,增强空间观念及数学思考能力的培养,并获得数学活动经验。第七环节课堂小结1过本节课的学习,你学到了哪些知识?有何体会?(多边形的有关概念、正多边形、多边形的内角和定理,并能利用公式进行计算)2在学习多边形的有关概念时,我们是通过复习三角形的有关概念来类比得出的。在研究、探索多边形的内角和公式时,首先从具体的、特殊的四边形、五边形入手,来得出多边形的内角和公式。在研究问题的过程中,把多边形问题通过分割成三角形来研究,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电厂防雨棚施工方案(3篇)
- 学校主题墙施工方案(3篇)
- 新疆化学考试题库及答案
- 北京市门头沟区2023-2024学年八年级上学期期末质量监测历史考试题目及答案
- 安徽省宣城市郎溪县2024-2025学年高一下学期第一次月考数学考试题目及答案
- 写升国旗应用题目及答案
- 小学作文题目试卷及答案
- 第一次买东西作文12篇
- 海燕象征意义与精神力量探究教案
- 我的校园故事300字9篇
- 胃管置入术课件
- 物业设施设备管理指南
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 国防共同条令教育与训练
- 全景制作方案
- 北师大版数学六年级上册第一单元《圆》 大单元作业设计
- 余映潮阅读教学好课的设计读书
- 手机直播间搭建课程设计
- NB-T 11069-2023 柔性直流用全桥和半桥子模块混合换流阀技术规范
- 【眼科学基础】眼科症状学
- 深圳机场国际货站信息系统(CTIS)全流程综合联调方案v17
评论
0/150
提交评论