【教学设计】《基本不等式及其应用》(上教版).docx_第1页
【教学设计】《基本不等式及其应用》(上教版).docx_第2页
【教学设计】《基本不等式及其应用》(上教版).docx_第3页
【教学设计】《基本不等式及其应用》(上教版).docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基本不等式及其应用教学目标【知识与能力目标】1、掌握两个基本不等式:(、)、(、为任意正数),并能用于解决一些简单问题.2、理解两个基本不等式相应的几何解释.初步理解代换的数学方法.3、在公式的探求过程中,领悟数形结合的数学思想,进一步体会事物之间互相联系及一定条件下互相转化等辨证唯物主义观点.【过程与方法目标】1、掌握两个基本不等式:(、)、(、为任意正数),并能用于解决一些简单问题.2、理解两个基本不等式相应的几何解释.初步理解代换的数学方法.【情感态度价值观目标】在公式的探求过程中,领悟数形结合的数学思想,进一步体会事物之间互相联系及一定条件下互相转化等辨证唯物主义观点.教学重难点【教学重点】两个基本不等式的知识发生过程和证明;基本不等式的应用.【教学难点】基本不等式的应用教学过程新课引入基本不等式1及其证明基本不等式1的图形解释图形引入基本不等式2基本不等式2的证明基本不等式的简单应用(探索)课堂小结作业布置(含课外思考)一、新课引入在客观世界中,有些量的大小关系是永远成立的.例如,、()、三角形任意两边之和大于第三边、三角形任意两边之差小于第三边等等.二、新课讲授1、基本不等式1基本不等式1 对于任意实数和,有,当且仅当时等号成立.(1)基本不等式1的证明证明:因为,所以. 当时,.当时,.所以,当且仅当时,的等号成立.(2)基本不等式1的几何解释 解释1边长为的正方形面积与边长为的正方形面积之和大于等于以、为邻边长的矩形面积的2倍(当且仅当时等号成立).已知正方形,分别在边、边上取点、,使得.分别过点、作、,垂足为、.和交于点.由几何画板进行动态计算演示,得到阴影部分的面积 剩余部分的面积,当且仅当点移至中点时等号成立. 解释2某届数学大会的会徽怎样的?三国时期赵爽在勾股方圆图注中对勾股定理的证明可用现代数学表述为:如图所示,以、分别表示勾、股、弦,那么,表示“弦图”中两块“朱实”的面积,表示“中黄实”的面积. 于是,从图中可明显看出,四块“朱实”的面积加上一个“中黄实”的面积就等于以为边长的正方形“弦实”的面积,即这就是勾股定理的一般表达式.由图可知:以为边长的正方形“弦实”的面积 四块“朱实”的面积即,(当且仅当时等号成立).2、基本不等式2观察下面这个几何图形.已知半圆,是半圆上任一点,是直径.过作,垂足为.显然有线段的长度大于等于垂线段的长度.设,请用、来表示上述这个不等关系.( 即,当且仅当时等号成立.)基本不等式2 对于任意正数、,有,当且仅当时等号成立.我们把和分别叫做正数、的算术平均数和几何平均数.因此基本不等式2也可叙述为:两个正数的算术平均数不小于它们的几何平均数.(1)基本不等式2的证明证明:因为,所以. 当时,.当时,.所以,当且仅当时,的等号成立.另证:因为、为正数,所以、均存在. 由基本不等式1,得,当且仅当时等号成立. 即,当且仅当时等号成立.(2)基本不等式2的扩充 对于任意非负数、,有,当且仅当时等号成立.例1 已知,求证:,并指出等号成立的条件.证明:因为,所以 、同号,并有,.所以,.当且仅当 ,即时等号成立.说明1、体会代换的方法.2、用语言表述上述结论.3、思考:若,则代数式的取值范围是什么?(,当且仅当时等号成立.)3、两个基本不等式的简单应用(1)几何问题例2 在周长保持不变的条件下,何时矩形的面积最大?猜想:由几何画板电脑演示得出.解:设矩形的长、宽分别为、(、)且(定值),则同样周长的正方形的边长为. 矩形面积,正方形面积 由基本不等式2,得,又由不等式的性质得,即.由题意,(定值),所以(定值).当且仅当,即矩形为正方形时,矩形的面积最大.说明当两个正数的和为定值时,它们的积有最大值. 例如,若时,有,当且仅当时等号成立.(事实上,由(),得,当且仅当时等号成立.)思考题(1)通过查阅资料,了解这两个基本不等式其它的几何解释.(2)在面积保持不变的条件下,正方形的周长与矩形的周长之间有什么大小关系?(3)整理一些基本不等式的常用变式并给出证明.教学反思本堂课是基本不等式及其应用的第一节课,在学生熟练掌握不等式性质的前提下,介绍了两个基本不等式及其初步应用.尽管对于基本不等式而言证明不困难,但它却是今后学习诸如不等式证明、求函数最值等时的有力工具,因此牢固掌握这两个基本不等式是十分重要的.为了避免单纯地讲授基本不等式,本堂课借助计算机软件,采用以几何图形辅助代数知识讲授,由数到形,再由形到数的设计思路,将两个基本不等式的证明、解释及其在应用时的注意点穿插其中,并通过几何解释加强对基本不等式的感性认识,从而达到较好的教学效果.整堂课主要采用 “观察 猜测 归纳 证明”的探索流程,让学生通过观察两式的大小关系、几何图形中线段的长度来猜测相应的结论,最后再由讨论、归纳得出两个基本不等式.在教学过程中始终“关注学生的思维发展”.例如,将教科书上例1的证明题改成了一道探索题,通过对有关过程的设计,进而培养学生自行探索、解决问题的能力.此外,为了培养学生“观察 猜测”的能力,借用了几何画板的有关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论