J 计数原理 (理科).doc_第1页
J 计数原理 (理科).doc_第2页
J 计数原理 (理科).doc_第3页
J 计数原理 (理科).doc_第4页
J 计数原理 (理科).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

J计数原理J1基本计数原理10J1、J22012安徽卷6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A1或3B1或4C2或3D2或410D解析本题考查组合数等计数原理任意两个同学之间交换纪念品共要交换C15次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.6J1、J22012北京卷从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A24B18C12D66B解析本题考查排列组合计数的基础知识,考查分析问题和解决问题的能力法一:(直接法)本题可以理解为选出三个数,放在三个位置,要求末尾必须放奇数,如果选到了0这个数,这个数不能放在首位,所以nCCACC12618;法二:(间接法)奇数的个数为nCCCACC18.7K2、J12012广东卷从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.7D解析本题考查利用古典概型求解概率以及两个基本计数原理,解决本题的突破口是首先确定符合条件的两位数的所有个数,再找到个位是0的个数,利用公式求解,设个位数与十位数分别为y,x,则如果两位数之和是奇数,则x,y分别为一奇数一偶数:第一类x为奇数,y为偶数共有:CC25;另一类x为偶数,y为奇数共有:CC20.两类共计45个,其中个位数是0,十位数是奇数的两位数有10,30,50,70,90这5个数,所以个位数是0的概率为:P(A).6J1、J22012浙江卷若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A60种B63种C65种D66种6D解析 本题考查计数原理与组合等基础知识,考查灵活运用知识与分析、解决问题的能力要使所取出的4个数的和为偶数,则对其中取出的数字奇数和偶数的个数有要求,所以按照取出的数字奇偶数的个数分类.1,2,3,9这9个整数中有5个奇数,4个偶数要想同时取4个不同的数其和为偶数,则取法有三类:4个都是偶数:1种;2个偶数,2个奇数:CC60种;4个都是奇数:C5种不同的取法共有66种点评 对于计数问题,有时正确的分类是解决问题的切入点同时注意分类的全面与到位,不要出现遗漏现象J2排列、组合11J22012山东卷现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A232B252C472D48411C解析本题考查排列、组合,考查运算求解能力,应用意识,中档题法一:(排除法)先从16张卡片选3张,然后排除所取三张同色与红色的为2张的情况,C4CCC56088472.法二:有红色卡片的取法有CCCCCCC,不含红色卡片的取法有CCCCCC,总共不同取法有CCCCCCCCCCCCC472.8J22012陕西卷两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A10种B15种C20种D30种8C解析本小题主要考查排列、组合的知识,解题的突破口为找出甲或乙赢的情况进行分析计算依甲赢计算:打三局结束甲全胜只有1种;打四局结束甲前三局赢两局,第四局必胜有C种;打五局结束甲前四局赢两局,第五局必胜有C16种;故甲胜共有10种,同样乙胜也有10种,所以共有20种,故选C.5J22012辽宁卷一排9个座位坐了3个三口之家若每家人坐在一起,则不同的坐法种数为()A33! B3(3!)3C(3!)4D9!5C解析本小题主要考查排列组合知识解题的突破口为分清是分类还是分步,是排列还是组合问题由已知,该问题是排列中捆绑法的应用,即先把三个家庭看作三个不同元素进行全排列,而后每个家庭内部进行全排列,即不同坐法种数为AAAA(3!)4.2J22012课标全国卷将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A12种B10种C9种D8种2A解析分别从2名教师中选1名,4名学生中选2名安排到甲地参加社会实践活动即可,则乙地就安排剩下的教师与学生,故不同的安排方法共有CC12种故选A.11J22012全国卷将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A12种B18种C24种D36种11A解析本小题主要考查排列组合的应用,解题的突破口为正确理解题意并进行合理分步第一步排第一列,一定是一个a、一个b和一个c,共有A6种不同的排法,第二步排第二列,要求每行每列字母均不同共有2种不同的排法,则总共有2A12种不同的排法,故选A.6J1、J22012北京卷从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A24B18C12D66B解析本题考查排列组合计数的基础知识,考查分析问题和解决问题的能力法一:(直接法)本题可以理解为选出三个数,放在三个位置,要求末尾必须放奇数,如果选到了0这个数,这个数不能放在首位,所以nCCACC12618;法二:(间接法)奇数的个数为nCCCACC18.10J1、J22012安徽卷6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A1或3B1或4C2或3D2或410D解析本题考查组合数等计数原理任意两个同学之间交换纪念品共要交换C15次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.11J22012四川卷方程ayb2x2c中的a,b,c3,2,0,1,2,3,且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A60条B62条C71条D80条11B解析 由于要表示抛物线,首先a、b均不能为0.又b要进行平方,且只需考虑不同情况,故b2在1,4,9中考虑c0时,若a取1,则b2可取4或9,得到2条不同的抛物线;若a取2,3,2,3任意一个,b2都有1,4,9三种可能,可得到4312条抛物线;以上共计14条不同的抛物线;c0时,在3,2,1,2,3中任取3个作为a,b,c的值,有A60种情况,其中a,c取定,b取互为相反数的两个值时,所得抛物线相同,这样的情形有4A24种,其中重复一半,故不同的抛物线共有601248(条),以上两种情况合计144862(条)6J1、J22012浙江卷若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A60种B63种C65种D66种6D解析 本题考查计数原理与组合等基础知识,考查灵活运用知识与分析、解决问题的能力要使所取出的4个数的和为偶数,则对其中取出的数字奇数和偶数的个数有要求,所以按照取出的数字奇偶数的个数分类.1,2,3,9这9个整数中有5个奇数,4个偶数要想同时取4个不同的数其和为偶数,则取法有三类:4个都是偶数:1种;2个偶数,2个奇数:CC60种;4个都是奇数:C5种不同的取法共有66种点评 对于计数问题,有时正确的分类是解决问题的切入点同时注意分类的全面与到位,不要出现遗漏现象J3二项式定理1J32012四川卷 (1x)7的展开式中x2的系数是()A42B35C28D211D解析 根据二项展开式的通项公式Tr1Cxr,取r2得x2的系数为C21.5J32012上海卷在6的二项展开式中,常数项等于_5160解析考查二项式定理,主要是二项式的通项公式的运用由通项公式得Tr1Cx6rr(2)rCx62r,令62r0,解得r3,所以是第4项为常数项,T4(2)3C160.12J32012陕西卷 (ax)5展开式中x2的系数为10,则实数a的值为_121解析本小题主要考查了二项式定理,解题的关键是写出二项展开式的通项公式其展开式的通项公式为:Tr1Ca5rxr,令r2,所以x2的系数为Ca3,即有Ca310,a1,故填1.13J32012湖南卷6的二项展开式中的常数项为_(用数字作答)13160解析由二项式的通项公式得Tr1C(2)6rr(1)r26rCx3r,令3r0,r3,所以常数项为T4(1)3263C160.5J32012湖北卷设aZ,且0a13,若512012a能被13整除,则a()A0B1C11D125D解析512012aa(1341)2012(11314)2012a1C134C(134)2C(134)2012,显然当a113k,kZ,即a113k,kZ时,512012a134CC(134)1C(134)2011,能被13整除因为aZ,且0a13, 所以a12.故选D.10J32012广东卷6的展开式中x3的系数为_(用数字作答)1020解析本题考查二项展开式特定项的系数问题,解题关键是正确写出展开式的通项,Tr1Cx2(6r)rCx2(6r)xrCx123r,令123r3,解得r3,所以x3的系数为:C20.11J32012福建卷 (ax)4的展开式中x3的系数等于8,则实数a_.112解析本题考查二项展开式特定项的系数问题,解题关键是正确写出展开式的通项,该二项式的通项是Tr1Ca4rxr, x3的系数为8,即令r3,所以Ca18,所以4a8,所以a2.15J32012全国卷若n的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_1556解析本小题主要考查二项式定理中通项公式的应用,解题的突破口为先利用二项式系数相等求出n,再结合通项公式即可由题有CC,n8,Tr1Cx8rrC2r8,令2r82r5,的系数为C56,故填56.7J32012安徽卷 (x22)5的展开式的常数项是()A3B2C2D37D解析本题考查二项式定理的简单应用因为5x2525,又25展开式中的常数项为2C052,x25展开式中的常数项为x2C145,故二项式5展开式中的常数项为253.5J32012天津卷在5的二项展开式中,x的系数为()A10B10C40D405D解析本题考查二项式定理,考查运算求解能力,容易题Tk1C(2x2)5kk(1)kC25kx103k,令103k1,即k3,此时x的系数为(1)3C2240.14J3、B122012浙江卷若将函数f(x)x5表示为f(x)a0a1(1x)a2(1x)2a5(1x)5,其中a0,a1,a2,a5为实数,则a3_.1410解析 本题主要考查函数的解析式以及二项式定理法一:由于f(x)x55那么a3C(1)210,故应填10.法二:对等式f(x)x5a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论