




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.2.1直线与圆的位置关系学 习 目 标核 心 素 养1.掌握直线与圆的三种位置关系:相交、相切、相离2会用代数法和几何法来判断直线与圆的三种位置关系3会用直线与圆的位置关系解决一些实际问题通过研究直线与圆的位置关系,提升逻辑推理、数学运算、直观想象的数学素养.1直线与圆有三种位置关系位置关系交点个数相交有两个公共点相切只有一个公共点相离没有公共点2.直线AxByC0与圆(xa)2(yb)2r2的位置关系及判断位置关系相交相切相离公共点个数两个一个零个判定方法几何法:设圆心到直线的距离ddrdrdr代数法:由消元得到一元二次方程的判别式000思考:用“代数法”与“几何法”判断直线与圆的位置关系各有什么特点?提示“几何法”与“代数法”判断直线与圆的位置关系,是从不同的方面,不同的思路来判断的“几何法”更多地侧重于“形”,更多地结合了图形的几何性质;“代数法”则侧重于“数”,它倾向于“坐标”与“方程”1直线3x4y50与圆x2y21的位置关系是()A相交B相切C相离D无法判断B圆心(0,0)到直线3x4y50的距离d1. dr,直线与圆相切选B.2设A,B为直线yx与圆x2y21的两个交点,则|AB|()A1 BCD2D直线yx过圆x2y21的圆心C(0,0),则|AB|2.3直线x2y0被圆C:x2y26x2y150所截得的弦长等于_4由已知圆心C(3,1),半径r5.又圆心C到直线l的距离d,则弦长24.直线与圆的位置关系【例1】已知直线方程mxym10,圆的方程x2y24x2y10.当m为何值时,圆与直线:(1)有两个公共点;(2)只有一个公共点;(3)没有公共点解法一:将直线mxym10代入圆的方程化简整理得,(1m2)x22(m22m2)xm24m40.4m(3m4),(1)当0时,即m0或m时,直线与圆相交,即直线与圆有两个公共点;(2)当0时,即m0或m时,直线与圆相切,即直线与圆只有一个公共点;(3)当0时,即m0,直线与圆相离,即直线与圆没有公共点法二:已知圆的方程可化为(x2)2(y1)24,即圆心为C(2,1),半径r2.圆心C(2,1)到直线mxym10的距离d.(1)当d0或m2时,即m0时,直线与圆相离,即直线与圆没有公共点直线与圆位置关系判断的三种方法:(1)几何法:由圆心到直线的距离d与圆的半径r的大小关系判断(2)代数法:根据直线与圆的方程组成的方程组解的个数来判断(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系已知圆C:x2y24x0,l是过点P(3,0)的直线,则()Al与C相交Bl与C相切Cl与C相离D以上三个选项均有可能A将点P(3,0)的坐标代入圆的方程,得32024391231,所以点A在圆外,故切线有两条若所求直线的斜率存在,设切线斜率为k,则切线方程为y3k(x4),即kxy4k30.设圆心为C,因为圆心C(3,1)到切线的距离等于半径1,所以1,即|k4|,所以k28k16k21,解得k.所以切线方程为xy30,即15x8y360.若直线斜率不存在,圆心C(3,1)到直线x4的距离为1,这时直线x4与圆相切,所以另一条切线方程为x4.综上,所求切线方程为15x8y360或x4.1本例中若将点“A(4,3)”改为“A(2,1)”,则结果如何?解因为(23)2(11)21,所以点A(2,1)在圆上,从而A是切点,又过圆心(3, 1)与点A的直线斜率为0,故所求切线的方程为y1.2若本例的条件不变,求其切线长解因为圆心C的坐标为(3,1),设切点为B,则ABC为直角三角形,|AC|,又|BC|r1,则|AB|4,所以切线长为4.圆的切线的求法:(1)点在圆上时:求过圆上一点(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,再由垂直关系得切线的斜率为,由点斜式可得切线方程如果斜率为零或不存在,则由图形可直接得切线方程xx0或yy0.(2)点在圆外时:几何法:设切线方程为yy0k(xx0)由圆心到直线的距离等于半径,可求得k,也就得切线方程代数法:设切线方程为yy0k(xx0),与圆的方程联立,消去y后得到关于x的一元二次方程,由0求出k,可得切线方程特别注意:切线的斜率不存在的情况,不要漏解直线与圆的相交问题探究问题1已知直线l与圆相交,如何利用通过求交点坐标的方法求弦长?提示将直线方程与圆的方程联立解出交点坐标,再利用|AB|求弦长2若直线与圆相交、圆的半径为r、圆心到直线的距离为d,如何求弦长?提示通过半弦长、弦心距、半径构成的直角三角形,如图所示,求得弦长l2.【例3】求直线l:3xy60被圆C:x2y22y40截得的弦长思路探究:法一:法二:解法一:圆C:x2y22y40可化为x2(y1)25,其圆心坐标为(0,1),半径r.点(0,1)到直线l的距离为d,l2,所以截得的弦长为.法二:设直线l与圆C交于A、B两点由得交点A(1,3),B(2,0),所以弦AB的长为|AB|.3若本例改为“过点(2,0)的直线被圆C:x2y22y40截得的弦长为,求该直线方程”,又如何求解?解由例题知,圆心C(0,1),半径r,又弦长为, 所以圆心到直线的距离d.又直线过点(2,0),知直线斜率一定存在,可设直线斜率为k,则直线方程为yk(x2),所以d,解得k3或k,所以直线方程为y3(x2)或y(x2),即3xy60或x3y20.求弦长常用的三种方法:(1)利用圆的半径r,圆心到直线的距离d,弦长l之间的关系d2r2解题(2)利用交点坐标,若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长(3)利用弦长公式,设直线l:ykxb,与圆的两交点(x1,y1),(x2,y2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l|x1x2|.1本节课的重点是理解直线和圆的三种位置关系,会用圆心到直线的距离来判断直线与圆的位置关系,能解决直线与圆位置关系的综合问题难点是解决直线与圆的位置关系2判断直线与圆位置关系的途径主要有两个:一是圆心到直线的距离与圆的半径进行大小比较;二是直线与圆的方程组成的方程组解的个数两者相比较,前者较形象、直观,便于运算3与圆有关的弦长、切线问题常利用几何法求解,体现了直观想象的数学素养,但注意验证所求直线的斜率不存在的情形,避免漏解1直线3x4y120与圆(x1)2(y1)29的位置关系是()A过圆心B相切C相离D相交但不过圆心D圆心坐标为(1,1),圆心到直线3x4y120的距离为dr3.又点(1,1)不在直线3x4y120上,所以直线与圆相交且不过圆心选D.2若直线yxa与圆x2y21相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏宿迁市泗洪县面向普通高校应届毕业生招聘教师28人考前自测高频考点模拟试题及答案详解(夺冠)
- 废旧塑料回收利用在2025年的技术创新与产业绿色循环报告
- 2025贵州遵义医科大学附属口腔医院第十三届贵州人才博览会引进急需紧缺专业人才6人模拟试卷及答案详解(各地真题)
- 2025广东湛江经济技术开发区建设投资发展集团有限公司招聘党群工作部副经理1人考前自测高频考点模拟试题完整参考答案详解
- 2025年甘肃省武威市凉州区清源镇选聘专业化管理的大学生村文书模拟试卷及1套完整答案详解
- 2025防水工程施工合同范本
- 2025工地门卫劳动合同范本
- 质保协议书范本
- 安全生产月风险辨识题库及答案解析
- 房地产项目合作协议书
- 软件开发驻场合同协议
- 音乐培训机构招生
- 生产成本控制及预算管理表格模板
- 动漫艺术概论考试卷子及答案
- 山东省青岛市即墨区实验学校2025-2026学年九年级上学期开学考试英语试题(含答案)
- 浙江省浙南名校联盟2025-2026学年高二上学期开学返校联考英语试卷(含音频)
- 2025年国企中层干部竞聘笔试题及答案
- 材料返款协议书
- DB3202∕T 1075-2024 职业健康检查质量控制技术规范
- 教育惩戒培训课件
- 期末教学质量分析会校长讲话:把脉找因、沉心补课教学质量没有“回头路”
评论
0/150
提交评论