




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年电大本科工程数学期末试题资料三套附答案工程数学(本)模拟试题一、单项选择题(每小题3分,共21分)1设A是矩阵,是矩阵,且有意义,则是( B )矩阵 A B C D 2若X1、X2是线性方程组AX=B的解,而是方程组AX = O的解,则( A )是AX=B的解A B C D 3设矩阵,则A的对应于特征值的一个特征向量=( C ) A B C D 4. 下列事件运算关系正确的是( A )A B CD 5若随机变量,则随机变量( D ) A B C D 6设是来自正态总体的样本,则(C )是的无偏估计A B C D 7对给定的正态总体的一个样本,未知,求的置信区间,选用的样本函数服从( B )A分布 Bt分布 C指数分布 D正态分布 二、填空题(每小题3分,共15分) 1设三阶矩阵的行列式,则=2 2若向量组:,能构成R3一个基,则数k 3设互不相容,且,则0 4若随机变量X ,则 5设是未知参数的一个估计,且满足,则称为的无偏 估计 三、(每小题10分,共60分)1已知矩阵方程,其中,求 解:因为,且 即 所以 2设向量组,求这个向量组的秩以及它的一个极大线性无关组解:因为( )= 所以,r() = 3 它的一个极大线性无关组是 (或) 3用配方法将二次型化为标准型,并求出所作的满秩变换解: 令 即得 由(*)式解出,即得或写成 4罐中有12颗围棋子,其中8颗白子,4颗黑子若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率解:设=“取到3颗棋子中至少有一颗黑子”,=“取到的都是白子”,=“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则(1) (2) 5设随机变量X N(3,4)求:(1)P(1 X 7);(2)使P(X a)=0.9成立的常数a (,) 解:(1)P(1 X 7)= = = 0.9973 + 0.8413 1 = 0.8386 (2)因为 P(X a)= 0.9所以 ,a = 3 + = 5.56 6从正态总体N(,9)中抽取容量为64的样本,计算样本均值得= 21,求的置信度为95%的置信区间(已知 )解:已知,n = 64,且 因为 = 21,且 所以,置信度为95%的的置信区间为: 四、证明题(本题4分) 设是n阶矩阵,若= 0,则证明:因为 = = 所以 工程数学(本)模拟试题一、单项选择题(每小题3分,共21分)1设都是阶矩阵,则下列命题正确的是(D)A. 若,且,则 B. C. D. ,且,则 2在下列所指明的各向量组中,(B )中的向量组是线性无关的A. 向量组中含有零向量B. 任何一个向量都不能被其余的向量线性表出C. 存在一个向量可以被其余的向量线性表出D. 向量组的向量个数大于向量的维数 3设矩阵,则A的对应于特征值的一个特征向量=( C ) A B C D 4. 甲、乙二人射击,分别表示甲、乙射中目标,则表示(A)的事件A. 至少有一人没射中 B. 二人都没射中 C. 至少有一人射中 D. 两人都射中 5设,是的分布函数,则下列式子不成立的是(C)A. B. C. D. 6设是来自正态总体的样本,则(D )是无偏估计A. B. C. D. 7对正态总体的假设检验问题中,检验解决的问题是(A)A. 已知方差,检验均值 B. 未知方差,检验均值 C. 已知均值,检验方差 D. 未知均值,检验方差 二、填空题(每小题3分,共15分) 1设是2阶矩阵,且,1 2已知齐次线性方程组中为矩阵,且该方程组有非零解,则3 3,则0.7 4若连续型随机变量的密度函数的是,则 5若参数的两个无偏估计量和满足,则称比更有效 三、计算题(每小题10分,共60分)1设矩阵,问:A是否可逆?若A可逆,求解:因为 所以A可逆。利用初等行变换求,即即 由矩阵乘法得2线性方程组的增广矩阵为求此线性方程组的全部解解:将方程组的增广矩阵化为阶梯形 此时齐次方程组化为 ,(其中x3为自由未知量).分别令,得齐次方程组的一个基础解系 令,得非齐次方程组的一个特解由此得原方程组的全部解为(其中为任意常数)3用配方法将二次型化为标准型,并求出所作的满秩变换解: 令 即得 由(*)式解出,即得或写成 4两台车床加工同样的零件,第一台废品率是1,第二台废品率是2,加工出来的零件放在一起。已知第一台加工的零件是第二台加工的零件的3倍,求任意取出的零件是合格品的概率解:设:“是第台车床加工的零件”,:“零件是合格品”.由全概公式有显然,故 5设,试求;(已知)解: 6设来自指数分布,其中是未知参数,求的最大似然估计值解:答案: 解: 似然函数为取对数得求导得令得的最大似然估值 四、证明题(本题4分) 设是随机事件,试证:证明:由事件的运算得 ,且与互斥,由加法公式得 ,又有 ,且与互斥,由加法公式得 综合而得,证毕工程数学(本)模拟试题 一、单项选择题(每小题3分,本题共21分)1设为阶矩阵,则下列等式成立的是(A)(A) (B) (C) (D) 2向量组的秩是(C)(A) (B) (C) (D) 3设是阶方阵,当条件(B)成立时,元线性方程组有惟一解(A) (B) (C) (D) 4设为随机事件,下列等式成立的是(B)(A) (B) (C) (D) 5随机事件互斥的充分必要条件是(C)(A) (B) (C) (D) 6下列函数中能够作为连续型随机变量的密度函数的是(A)(A) (B) (C) (D) 7设总体满足,又,其中是来自总体的个样品,则等式(B)成立 (A) (B)(C) (D) 二、填空题(每小题3分,共15分) 1 2若是的特征值,则是方程 的根 3已知,则 4设连续型随机变量的密度函数是,则 5统计量就是不含未知参数 的样本函数 三、计算题(每小题10分,共60分)1设矩阵,求解:由矩阵乘法和转置运算得利用初等行变换得即 2在线性方程组中取何值时,此方程组有解有解的情况下写出方程组的一般解解:将方程组的增广矩阵化为阶梯形 由此可知当时方程组无解,当时方程组有解此时方程组的一般解为 3用配方法将二次型化为标准型,并求出所作的满秩变换解: 令 即得 由式解出,即得或写成4一袋中有9个球,其中6个黑球3个白球今从中依次无放回地抽取两个,求第2次抽取出的是白球的概率.解:设如下事件:“第次抽取出的是白球”()显然有,由全概公式得 5设,试求;(已知)解: 6某钢厂生产了一批轴承,轴承的标准直径20mm,今对这批轴承进行检验,随机取出16个测得直径的平均值为19.8mm,样本标准差,已知管材直径服从正态分布,问这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年统计岗位考试题及答案
- 临汾市中储粮2025秋招网申填写模板含开放题范文
- 大兴安岭地区中储粮2025秋招机电维修岗高频笔试题库含答案
- 大唐电力赤峰市2025秋招半结构化面试模拟30问及答案
- 开封市中石化2025秋招面试半结构化模拟题及答案油田工程技术岗
- 国家能源泰安市2025秋招网申填写模板含开放题范文
- 六盘水市中储粮2025秋招网申填写模板含开放题范文
- 中国广电张家界市2025秋招笔试行测题库及答案综合管理类
- 国家能源乌海市2025秋招化学工程类面试追问及参考回答
- 忻州市中石油2025秋招笔试模拟题含答案炼化装置操作岗
- 河北省沧州市东光县五校联考2024-2025学年九年级上学期语文10月月考试卷(含答案)
- 中层干部面试题库及答案
- 船舶修造安全培训记录课件
- 2025年AI时代数字身份安全技术应用指南-
- 2025年版简单个人房屋装修合同模板下载
- 业务公关费用管理办法
- 交通管制安全知识培训课件
- 2025标准建设银行贷款合同范本
- 小型水库养护可行性报告
- 留学顾问培训课件下载
- 《自主导航技术与应用》课件 第六章路径规划与避障
评论
0/150
提交评论