2011浙江省普通高考考试说明理科(全).doc_第1页
2011浙江省普通高考考试说明理科(全).doc_第2页
2011浙江省普通高考考试说明理科(全).doc_第3页
2011浙江省普通高考考试说明理科(全).doc_第4页
2011浙江省普通高考考试说明理科(全).doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2011年浙江省高考考试大纲语 文考试能力要求高考语文要求全面测试考生的语文能力。语文能力可分为识记、理解、分析综合、鉴赏评价、表达应用和探究六种,并表现为六个层级。A.识记 指识别和记忆,是最基本的能力层级。B.理解 指领会并能作简单的解释,是在识记基础上高一级的能力层级。C.分析综合 指分解剖析和归纳整理,是在识记和理解的基础上进一步提高了的能力层级。D.鉴赏评价 指对阅读材料的鉴别、赏析和评说,是以识记、理解和分析综合为基础,在阅读方面发展了的能力层级。E.表达应用 指对语文知识和能力的运用,是以识记、理解和分析综合为基础,在表达方面发展了的能力层级。F.探究 指对某些问题进行探讨,有见解、有发现、有创新,是在识记和理解和分析综合的基础上发展了的能力层级。对A、B、C、D、E、F六个能力层级均可有难易不同的考查。高考语文坚持语文学科的工具性与人文性的统一,在注重对考生语文素养全面测试的同时,着重考查考生掌握和应用语文基础知识的能力和阅读、写作方面的能力。考试内容语文科的考试内容是根据普通高等学校对新生文化素质和能力的要求,依据中华人民共和国教育部颁布的普通高中语文课程标准(实验)、普通高等学棱招生全国统一考试大纲和浙江省教育厅颁布的浙江省普通高中新课程实验语文学科教学指导意见,并考虑中学语文教学实际而确定的。一、语言文字运用掌握基本的语言知识,具备一定的语言表达技能。1现代汉语普通话常用字字音的识记2现代常用规范汉字的识记和正确书写3词语(包括熟语)的识记、理解和正确使用4病句的辨析和修改病句类型:语序不当、搭配不当、成分残缺或赘余、结构混乱;表意不明、不合逻辑。5语句的扩展,语段的压缩6句式的选用,仿用和变换7常见修辞方法的正确运用常见修辞方法:比喻、比拟、借代、夸张,对偶、排比、反复、设问、反问。8语言表达的简明、连贯、得体、准确、鲜明、生动二、现代文阅读能阅读分析实用类、论述类文本。阅读鉴赏文学类文本。(一)实用类、论述类文本阅读1文中重要概念含义、重要句子含意的理解2文中信息的筛选和整合3语言特色的分析,文章结构的把握,中心意思概括4文体基本特征和主要表现手法的分析5文本主要观点和基本倾向的评价6对文本所产生的社会价值和影响的评价7对文本某种特色的深度思考和判断8从不同的角度和层面对文本反映的人生价值和时代精神的发掘9对作者的写作背景和写作意图的探讨10对文本中某些问题的探究(二)文学类文本阅读1作品结构的分析,作品主题的概括2作品体裁基本特征和主要表现手法的分析3重要语句丰富含意的体会,精彩语句表现力的品味4作品形象的欣赏,作品内涵的赏析,作品艺术魅力的领悟5对作品所表现的价值判断和审美取的评价6从不同角度的层面对作品意蕴、民族心理和人文精神的发掘7对作者的创作背景和创作意图的探讨8对作品的个性化阅读和有创意的解读三、古代诗文阅读能阅读浅显的古代诗文,默写常见的名旬名篇。1常见文言实词在文中含义的理解2常见文言虚词在文中意义和用法的理解常见文言虚词(18个):而、何、乎、乃、其、且、若、所、为、焉、也、以、因、于、与,则、者、之。3与现代汉语不同的句式和用法的理解不同的句式和用法:判断句、被动句、宾语前置、成分省略和词类活用。4文中句子的理解和翻译5文中信息的筛选6文章内容要点的归纳,中心意思的概括7作者在文中观点态度的分析概括8文学作品形象、语言和表述技巧的鉴赏9文章思想内容和作者观点态度的评价10传统文化经典(论语选读)的正确解读和批判继承11常见古诗文名句名篇的默写(参考篇目见附录1)四、写作能写实用类、论述类和文学类文章。作文考试的要求分为基础和发展两个等级。(一)基础等级1符合题意2符合文体要求3感情真挚,思想健康4内容充实,中心明确5语言通顺,结构完整6标点正确,不写错别字(二)发展等级1深刻透过现象深入本质,揭示事物内在的因果关系,观点具有启发性。2丰富材料丰富,论据充实,形象丰满,意境深远。3有文采用词贴切,句式灵活,善于运用修辞手法,文句有表现力。4有创新见解新颖,材料薪鲜,构思新巧,推理想象有独到之处,有个性色彩。考试形式与试卷结构 一、考试形式 闭卷,笔试。试卷满分为150分,考试限时150分钟。 二、试题类型单项选择题、多项选择题、填空题、古文断句题、古文翻译题、简答题、论述题、写作题等。三、试卷结构1语言文字运用 24分2现代文阅读 29分3古代诗文阅读 37分4写作 60分附录1古诗文背诵参考篇目(一)古文(12篇)1论语(浙江省普通高中新课程实验语文学科教学指导意见中规定的篇章)2寡人之于国也 孟子3劝学(节选:从“君子日”到“用心躁也”) 荀子4逍遥游(节选:从“北冥有鱼”到“而后乃今将图南”) 庄子5廉颇蔺相如列传(节选:从“廉颇曰”到“为刎颈之交”) 司马迁 6报任安书(节选:从“古者富贵而名摩灭”到“难为俗人言也”) 司马迁 7滕王阁序并诗(节选:从“时维九月”到“岂效穷途之哭”) 王 勃 8师说 韩 愈 9阿房宫赋 杜 牧 10秋声赋(节选:从“余曰”到“物过盛而当杀”) 欧阳修 11六国论(节选:从“齐人未尝赂秦”到“是又在六国下矣”) 苏 洵 12赤壁赋 苏 轼 (二)古诗词曲(12篇)1渔父 楚辞2蜀道难 李 白 3登高 杜 甫 4琵琶行 白居易 5锦瑟 李商隐 6虞美人 (春花秋月何时了) 李 煜 7蝶恋花 (槛菊愁烟兰泣露) 晏 殊 8雨霖铃 (寒蝉凄切) 柳 永 9念奴娇赤壁怀古 苏 轼 10声声慢(寻寻觅觅) 李清照 11永遇乐京口北固亭怀古 辛弃疾 12长亭送别(【端正好】【滚绣球】【一煞】【收尾】) 王实甫 数学(必修+选修).考试要求根据普通高等学校对新生文化素质的要求,依据普通高等学校招生全国统一考试大纲和浙江省普通高考考生说明公布的内容范围命题,不超出浙江省普通高中新课程实验数学学科指导意见中规定的必修模块和指定选修模块(A)的范围。数学学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。数学学科的考试,要发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平以及进入高等学校继续学习的潜能。一、知识要求知识是指普通高中数学课程标准(实验)(以下简称课程标准)中所规定的必修课程及选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。对知识的要求依次是了解、理解、掌握三个层次。(一)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。(二)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。(三)掌握:要求对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决。二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据图表处理能力以及应用意识和创新意识。(一)空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。(二)抽象概括能力:抽象概括能力就是从具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。(三)推理论证能力:中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的推理能力。(四)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。(五)数据图表处理能力:会收集数据、整理及分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断。数据图表处理能力主要依据统计中的方法对数据进行整理、分析,并解决给定的实际问题。(六)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明。主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。(七)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题。三、个性品质要求个性品质是指考生个体的情感、态度和价值观。具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架。(一)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,从学科的整体高度和思维价值的高度考虑问题,使对数学基础知识的考查达到必要的深度。(二)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度。(三)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能。 对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际。对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性。对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言的互相转化。对运算求解能力的考查,主要是考查计算和推理能力;对数据图表处理能力的考查,主要是运用统计的基本方法和思想解决实际问题的能力。(四)对应用意识的考查主要采用解决应用问题的形式。命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际、学生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平。(五)对创新意识的考查是对高层次理性思维的考查。要创设新颖的问题情境,构造有一定深度和广度的数学问题,注重问题的多样化,体现思维的发散性。精心设计考查数学主体内容、体现数学素质的试题;反映数、形运动变化的试题及研究型、探索型、开放型的试题。(六)试题要从学科整体意义和思想价值立意,注重通性通法,淡化特殊技巧。要注意数学概念、数学本质和解决数学问题的常规方法。试题设计力求公平,贴近学生实际,在熟悉的情境中考查能力;试题设计力求情境熟、入口宽、方法多、有层次,并贴近学生实际,以使学生在公平的背景下展示真实水平。.考试内容一、集合(一)集合的含义与表示1了解集合的含义、元素与集合的属于”关系。2能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。(二)集合间的基本关系1理解集合之间包含与相等的含义,能识别给定集合的子集。2在具体情境中,了解全集与空集的含义。(三)集合的基本运算1理解两个集合的并集与交集的含义,会求两个简单的集合的并集与交集。2理解在给定集合中一个子集的补集的含义,会求给定子集的补集。3能使用韦恩(Venn)图表达集合的关系及运算。二、函数概念与基本初等函数(指数函数、对数函数、幂函数)(一)函数1了解函数、映射的概念,会求一些简单的函数定义域和值域。 2理解函数的三种表示法:解析法、图象法和列表法。3了解简单的分段函数,并能简单应用。4理解函数的单调性,会讨论和证明函数的单调性;理解函数的奇偶性,会判断函数的奇偶性。5理解函数的最大(小)值及其几何意义,并能求函数的最大(小)值。6会运用函数图像理解和研究函数的性质。(二)指数函数1了解指数函数模型的实际背景。2 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。3理解指数函数的概念,会解决与指数函数性质有关的问题。(三)对数函数1理解对数的概念及其运算性质,会用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。2理解对数函数的概念;能解决与对数函数性质有关的问题。(四)幂函数1了解幂函数的概念。2结合函数的图像,了解它们的变化情况。(五)函数与方程了解函数零点的概念,能判断函数在某个区间上是否存在零点。(六)函数模型及其应用1了解指数函数、对数函数以及幂函数的变化特征。2能利用给定的函数模型解决简单的实际问题。三、立体几何初步(一)空间几何体1了解和正方体、球有关的简单组合体的结构特征,理解柱、锥、台、球的结构特征。 2能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,会用斜二测法画出它们的直观图。3会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。4能识别三视图所表示的空间几何体;理解三视图和直观图的联系,并能进行转化。 5会计算球、柱、锥、台的表面积和体积不要求记忆公式)。(二)点、直线、平面之间的位置关系1理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内。公理2:过不在同一条直线上的三点,有且只有一个平面。公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。公理4:平行于同一条直线的两条直线互相平行。定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。2以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定。理解以下判定定理。如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行。如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。理解以下性质定理,并能够证明。如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行。如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行。垂直于同一个平面的两条直线平行。如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。3理解两条异面直线所成角、直线与平面所成角、二面角的概念。4.能证明一些空间位置关系的简单命题。四、平面解析几何初步(一)直线与方程1在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。2理解直线的倾斜角和斜率的概念及相互间的关系,掌握过两点的直线斜率的计算公式。3能根据两条直线的斜率判定这两条直线平行或垂直。4掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。5会求两直线的交点坐标。6掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。(二)圆与方程1掌握圆的标准方程与一般方程。2能判断直线与圆、圆与圆的位置关系。3能用直线和圆的方程解决一些简单的问题。4初步了解用代数方法处理几何问题的思想。(三)空间直角坐标系1了解空间直角坐标系,会用空间直角坐标表示点的位置。2了解空间两点间的距离公式。五、算法初步算法的含义、程序框图(一)了解算法的含义,了解算法的思想。(二)理解程序框图的三种基本逻辑结构:顺序结构、条件结构和循环结构。六、统计(一)随机抽样1了解随机抽样的意义。2会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。(二)总体估计1了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。2理解样本数据标准差的意义和作用,会计算数据标准差及方差。3能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。4会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。5会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。七、概率(一)事件与概率1了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。2了解互斥事件、对立事件的意义及其运算公式。(二)古典概型1.理解古典概型及其概率计算公式。2.会计算一些随机事件所含的基本事件数及事件发生的概率。八、基本初等函数(三角函数)(一)任意角的概念、弧度制1了解任意角的概念。2了解弧度制概念,能进行弧度与角度的互化。(二)三角函数1理解任意角三角函数(正弦、余弦、正切)的定义。2能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性。 3理解正弦函数、余弦函数的性质(如单调性、最大和最小值与轴交点等)。理解正切函数的单调性。4理解同角三角函数的基本关系式: 5了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响。6会用三角函数解决一些简单实际问题。九、平面向量(一)平面向量的实际背景及基本概念1了解向量的实际背景。2理解平面向量的概念,理解两个向量相等的含义。3.理解向量的几何表示。(二)向量的线性运算1.掌握向量加法、减法的运算,并理解其几何意义。2.掌握向量数乘的运算及其意义,理解两个向量共线的含义。3.了解向量线性运算的性质及其几何意义。(三)平面向量的基本定理及坐标表示1.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题。2.掌握平面向量的正交分解及其坐标表示。3.会用坐标表示平面向量的加法、减法与数乘运算。4.理解用坐标表示的平面向量共线的条件。(四)平面向量的数量积1.理解平面向量数量积的含义及其物理意义。2.了解平面向量的数量积与向量投影的关系。3.掌握数量积的坐标表达式,会进行平面向量数量积的运算。4.能运用数量积表示两个向量的夹角。(五)向量的应用1.会用向量方法解决某些简单的平面几何问题。2.会用向量方法解决简单的力学问题与其他一些实际问题。十、三角恒等变换(一)和与差的三角函数公式1会用向量的数量积推导出两角差的余弦公式。2能利用两角差的余弦公式导出两角差的正弦、正切公式。3能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。(二)简单的三角恒等变换能运用上述公式进行简单的恒等变换。十一、解三角形(一)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。(二) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。十二、数列(一)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式)。(二)等差数列、等比数列1. 理解等差数列、等比数列的概念。2.掌握等差数列、等比数列的通项公式与前n项和公式。3.了解等差数列与一次函数、等比数列与指数函数的关系。4.能利用等差、等比数列前n项和公式及其性质求一些特殊数列的和。5.能运用数列的等差关系或等比关系解决实际问题。十三、不等式(一)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。(二)一元二次不等式1会从实际情境中抽象出一元二次不等式模型。2通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系。3会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。(三)二元一次不等式组与简单线性规划问题1会从实际情境中抽象出二元一次不等式组。2了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。3会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。(四)基本不等式: (0)会用基本不等式解决简单的最大(小)值问题。十四、常用逻辑用语(一)命题及其关系 1理解必要条件、充分条件与充要条件的意义。2了解命题的概念,会分析原命题及其逆命题、否命题与逆否命题这四种命题的相互关系。(二)简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义。(三)全称量词与存在量词1理解全称量词与存在量词的意义。2能对含有一个量词的命题进行否定。十五、圆锥曲线与方程(一)圆锥曲线 1了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。2掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质。3了解双曲线的定义、掌握双曲线的几何图形和标准方程,理解它的简单几何性质。 4能解决直线与椭圆、抛物线的位置关系等问题。5.理解数形结合的思想。6了解圆锥曲线的简单应用。(二)曲线与方程了解方程的曲线与曲线的方程的对应关系。十六、空间向量与立体几何(一)空间向量及其运算1了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。2掌握空间向量的线性运算及其坐标表示。3掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。4掌握向量的长度公式,两向量夹角公式、空间两点间的距离公式,并会解决简单的立体几何问题。(二)空间向量的应用1理解直线的方向向量与平面的法向量。2会用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系。3会用向量方法证明直线和平面位置关系的有关命题。4会用向量方法解决两异面直线所成角、直线与平面所成角、二面角的计算问题,了解向量方法在研究几何问题中的作用。十七、导数及其应用(一)导数概念及其几何意义1了解导数概念的实际背景。2理解导数的几何意义。(二)导数的运算会用下面给出的常见基本初等函数的导数公式和导数的四则运算法则求简单的函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数。常见基本初等函数的导数公式和导数运算法则:(C为常数), nQ*; 。 法则1 。法则2 。法则3 。(三)导数的应用1了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。 2了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值;会求闭区间上函数的最大值、最小值。3.会用导数解决某些实际问题。十八、推理与证明(一)合情推理与演绎推理1了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。2了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。3了解合情推理和演绎推理之间的联系和差异。(二)直接证明与间接证明1了解直接证明的两种基本方法:分析法和综合法。2了解间接证明的一种基本方法反证法(三)数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。十九、数系的扩充与复数的引入(一)复数的概念1.理解复数的基本概念。2.理解复数相等的充要条件。3.了解复数的代数表示法及其几何意义。(二)复数的四则运算1.掌握复数代数形式的四则运算。2.了解复数代数形式的加、减运算的几何意义。二十、计数原理(一)分类加法计数原理、分步乘法计数原理1.理解分类加法计数原理和分类乘法计数原理;2.会用两个原理分析和解决一些简单的计数应用问题。(二)排列与组合1.理解排列、组合的概念。2.能利用计数原理推导排列数公式、组合数公式。3.能解决简单的实际问题。(三)二项式定理1.能用计数原理证明二项式定理。2.会用二项式定理解决与二项展开式有关的简单问题。二十一、概率与统计概率1理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性。2理解两点分布和超几何分布的意义,并能进行简单的应用。3了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。4理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。5利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。.考试形式与试卷结构考试采用闭卷、笔试形式。考试时间为120分钟。全卷满分为150分。试卷包括选择题、填空题和解答题等题型。全试卷共22题,其中选择题是四选一型的单项题;填空题只要求直接写出结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等。解答题应写出文字说明、演算步骤和推证过程。各题型赋分和比例如下:选择题共10小题,每小题5分,共50分;填空题共7小题,每小题4分,共28分;解答题共5小题,共72分。理科综合 .考试形式与试卷结构 一、答卷方式: 闭卷、笔试 二、考试时间: 150分钟,试卷满分300分。 三、科目分值: 物理120分、化学100分、生物80分。各学科试题不跨学科综合。 四、题型: 试卷包括选择题和非选择题,非选择题一般包括填空、实验、作图、计算、简答等题型。 五、理科综合试卷结构: (一)试卷分为第I卷和第卷。 第I卷为物理、化学、生物三个科目的必考题,题型为选择题,共20题,每题6分,共计120分。其中,物理4道单项选择题和3道题不定项选择题,化学7道单选择题,生物6道单项选择题。 第II卷为物理、化学、生物三个科目的非选择题。 (二)组卷:试卷按题型、内容和难度进行排列,选择题在前,非选择题在后,同一题型中同一学科的试题相对集中,同一学科中不同试题尽量按由易到难的顺序排列。 各学科考试能力要求、内容物理 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的普通高中课程方案(实验)、普通高中物理课程标准(实验)、2008年普通高等学校招生全国统一考试考试大纲(理科课程标准实验版)和浙江省普通高中新课程实验第一阶段学科教学指导意见(物理),结合浙江省教学实际,确定高考理工类物理科考试内容。考试内容包括知识和能力两个方面。 高考物理试题着重考查考生的知识、能力和科学素养,注重理论联系实际,注意科学技术和社会、经济发展的联系,注意物理知识在生产、生活等方面的广泛应用,以有利于高等学校选拔新生,并有利于激发考生学习科学的兴趣,增养实事求是的科学态度,形成正确的价值观,促进“知识与技能”、“过程与方法”、“情感态度与价值观”三维课程培养目标的实现。 一、考试的能力要求 在考查知识的同时,注重考查能力,并把对能力的考查放在首要位置。通过考查知识来鉴别考生能力的高低,但不把某些知识与某种能力简单地对应起来。 高考物理科要考查的能力主要包括以下几个方面: (一)理解能力:理解物理概念、物理规律的确切含义,理解物理规律的适用条件,以及它们在简单情况下的应用;能够清楚认识概念和规律的表达形式(包括文字表述和数学表达);理解相关知识的区别和联系。 (二)推理能力:能够根据已知的知识和物理事实、条件,对物理问题进行逻辑推理和论证,得出正确的结论或作出正确的判断,并能把推理过程正确地表达出来。 (三)分析综合能力:能够独立地对所遇到的问题进行具体分析、研究,弄清其中的物理状态、物理过程和物理情境,找出起重要作用的因素及有关条件;能够把一个复杂问题分解为若干较简单的问题,找出它们之间的联系;能够提出解决问题的方法,运用物理知识综合解决所遇到的问题。 (四)应用数学处理物理问题的能力:能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论;必要时能运用几何图形、函数图像进行表达、分析。 (五)实验与探究能力:能独立地完成表1中所列的实验、能明确实验目的,能理解实验原理和方法,能控制实验条件,会使用仪器,会观察、分析实验现象,会记录、处理实验数据,并得出结论,对结论进行分析和评价;能发现问题、提出问题,并制定解决方案;能运用已学过的物理理论、实验方法和实验仪器去处理问题,包括简单的设计性实验。 这五个方面的能力要求不是孤立的,着重对某一种能力进行考查的同时,在不同程度上也考查了与之相关的能力。同时,在应用某种能力处理或解决具体问题的过程中往往伴随着发现问题、提出问题的过程,因而高考对考生发现问题和提出问题的考查渗透在以上各自能力的考查中。 二、考试内容与要求 考查内容为物理1、物理2、3-1、3-2、3-4和3-5等六个模块的内容,具体考试范围与内容要求如表1所示。 对各部分知识内容要求掌握的程度,在表1中用数字I、II标出。I、II的含义如下: I.对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用。与课程标准中的“了解” 和“认识”相当 。 II.对所列知识要理解其确切含义及其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用。与课程标准中的“理解”和“应用”相当。对表1中各知识点的考查均不超过浙江省普通高中新课程实验第一阶段学科教学指导意见(物理)中所规定的教学要求。 表1 考查内容范围及要求主题 内容 质点的直线运动 参考系、质点 位移、速度和加速度 匀变速直线运动及其公式、图象相互作用与牛顿运动定律 滑动摩擦力、动摩擦因数、静摩擦力形变、弹性、胡克定律矢量和标量 力的合成和分解 共点力的平衡牛顿运动定律、牛顿运动定律的应用 超重和失重 抛体运动与圆周运动 运动的合成与分解 抛体运动 匀速圆周运动、角速度、线速度、向心加速度 匀速圆周运动的向心力 离心现象 机械能 功和功率 动能和动能定理 重力做功与重力势能 功能关系、机械能守恒定律及其应用 万有引力定律 万有引力定律及其应用 环绕速度 第二宇宙速度和第三宇宙速度 电场 物质的电结构,电荷守恒 静电现象的解释 点电荷 库仑定律 静电场 电场强度、点电荷的场强 电场线 电势能、电势 电势差 匀强电场中电势差与电场强度的关系 带电粒子在匀强电场中的运动 常见电容器 电容器的电压、电荷量和电容的关系 电路 欧姆定律 电阻定律 电阻的串联、并联 电源的电动势和内阻 闭合电路的欧姆定律 电功率、焦耳定律 磁场 磁场、磁感应强度、磁感线 磁通量通电直导线和通电线圈周围磁场的方向 安培力、安培力的方向 匀强磁场中的安培力 洛仑兹力、洛仑兹力的方向 洛仑兹力公式 带电粒子在匀强磁场中的运动 电磁感应 电磁感应现象法拉第电磁感应定律 楞次定律 自感、涡流 交变电流 交变电流、交变电流的图像 正弦交变电流的函数表达式、峰值和有效值 理想变压器 远距离输电 机械振动与机械波 简谐运动简谐运动的公式和图像 单摆、周期公式 受迫振动和共振 机械波 横波和纵波 横波的图像 波速、波长和频率(周期)的关系 波的干涉和衍射现象 多普勒效应光 光的折射定律 折射率 全反射、光导纤维 光的干涉、衍射和偏振现象 碰撞与动量守恒 碰撞与动量守恒原子结构 氢原子光谱 氢原子的能级结构、能级公式 原子核 原子核的组成、放射性、原子核的衰变、半衰期 放射性同位素 核力、核反应方程 结合能、质量亏损 裂变反应和聚变反应、裂变反应堆 射线的危害和防护 波粒二象性光电效应爱因斯坦光电效应方程单位制 知道中学物理中涉及到的国际单位制的单位和其它常用单位。其它常用单位包括小时、分、升、电子伏特(eV)。 实验与探究实验 实验一:研究匀变速直线运动实验二:探究弹力和弹簧伸长的关系实验三:探究求合力的方法 实验四:探究加速度与力、质量的关系 实验五:探究功与速度变化的关系 实验六:验证机械能守恒定律 实验七:探究导体电阻与其影响因素的定量关系实验八:描绘小灯泡的伏安特性曲线 实验九:测定电池的电动势和内阻 实验十:练习使用多用电表 实验十一:传感器的简单应用 实验十二:探究单摆周期与摆长的关系 实验十三:测定玻璃的折射率 实验十四:用双缝干涉测量光的波长(同时练习使用测量头) 实验十五:探究碰撞中的不变量物理(1B)部分 物理自选模块的考查内容为1-2和3-3两个模块,具体考试范围与内容要求如表1所示。对表1中所列知识要知道其内容及含义,并能在有关问题中识别和直接使用。与课程标准中的“了解”和“认识”相当。 对表1中各知识点的考查均不超过浙江省普通高中新课程实验第一阶段学科教学指导意见(物理)中所规定的教学要求。 对表1中各知识点的考查可以与物理1和物理2两个公共必修模块的知识点内容相结合。 考试题型包括选择题和非选择题,非选择题一般包括填空、实验、作图、计算、简答等题型。表1 考查内容范围及要求模块12主题内容说明分子动理论分子及其热运动物体的内能固体与液体气体热力学定律能量守恒定律热力学第一定律热力学第二定律有序、无序和熵核能放射性及其发现原子核的结构放射性衰变裂变和聚变能源的开发和利用新能源的开发能源与可持续发展模块33分子动理论与统计观点分子动理论的基本观点和实验依据阿伏加德罗常数气体分子运动速率的统计分布温度的微观解释、内能气体气体实验定律理想气体热力学定律与能量守恒热力学第一定律、能量守恒定律热力学第二定律单位制和实验单位制知道中学物理中涉及到的国际单位制的单位和其它常用单位。其它常用单位包括摄氏度()、升、标准大气压。知道国际单位制中规定的单位符号实验与探究用油膜法估测分子的大小要求会正确使用温度计(理科综合化学)根据普通高等学校对新生科学素养的要求,依据教育部考试中心普通高等学校招生全国统一考试大纲(理科课程标准实验版)、浙江省新课程高考方案和浙江省普通高中新课程实验第一阶段学科教学指导意见(化学),以及浙江省普通高中课程改革实验的实际情况,制定2011年普通高等学校招生全国统一考试大纲的说明(理科课程标准实验版)(供浙江省使用)的化学科部分。各知识点的考查不超出浙江省普通高中新课程实验第一阶段学科教学指导意见(化学)中所规定的教学要求。 一、考核目标与要求化学科考试,为了有利于选拔具有学习潜能和创新精神的考生,以能力测试为主导,在测试学生进一步学习所必需的知识、技能和方法的基础上,全面检测考生的化学科学素养。化学科命题注重测量自主学习的能力,重视理论联系实际,关注与化学有关的科学技术、社会经济和生态环境的协调发展,以促进学生在知识和技能、过程和方法、情感态度与价值观等方面的全面发展。(一)对化学学习能力的要求1接受、吸收、整合化学信息的能力(1)对中学化学基础知识融会贯通,有正确复述、再现、辨认的能力。(2)通过对实际事物、实验现象、实物、模型、图形、图表的观察,以及对自然界、社会、生产、生活中的化学现象的观察,获取有关的感性知识和印象,并进行初步加工、吸收和有序存储。(3)从试题提供的新信息中,准确地提取实质性内容,并能与已有知识块整合,重组为新知识块。 2分析和解决(解答)化学问题的能力(1)将实际问题分解,通过运用相关知识,采用分析、综合的方法,解决简单化学问题。(2)将分析解决问题的过程和成果,用正确的化学术语及文字、图表、模型、图形等表达,并作出解释。 3化学实验与探究能力(1)了解并初步实践化学实验研究的一般过程,掌握化学实验的基本方法和技能。(2)在解决简单化学问题的过程中,运用科学的方法,初步了解化学变化规律,并对化学现象提出科学合理的解释。(二)对知识内容的要求层次为了便于考查,将高考化学命题对各部分知识内容要求的程度,由低到高分为了解、理解(掌握)、综合应用三个层次,高层次的要求包含低层次的要求。其含义分别为:了解:对所学化学知识有初步认识,能够正确复述、再现、辨认或直接使用。理解(掌握):领会所学化学知识的含义及其适用条件,能够正确判断、解释和说明有关化学现象和问题,即不仅“知其然”,还能“知其所以然”。综合应用:在理解所学各部分化学知识的本质区别与内在联系的基础上,运用所掌握的知识进行必要的分析、类推或计算,解释、论证一些具体化学问题。二、考试范围和内容考试范围涵盖浙江省普通高中新课程实验化学学科“必修+选修IA”,即必修模块“化学1”、“化学2”和选修模块“有机化学基础”、“化学反应原理”、“实验化学”。 考试内容包括:化学科学特点和化学研究基本方法、化学基本概念和基本理论、常见无机物及其应用、有机化学基础和化学实验五个方面。 (一)化学科学特点和化学研究基本方法 1.了解化学的主要特

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论