2018年秋高中数学-指数函数及其性质第2课时指数函数及其性质的应用学案.docx_第1页
2018年秋高中数学-指数函数及其性质第2课时指数函数及其性质的应用学案.docx_第2页
2018年秋高中数学-指数函数及其性质第2课时指数函数及其性质的应用学案.docx_第3页
2018年秋高中数学-指数函数及其性质第2课时指数函数及其性质的应用学案.docx_第4页
2018年秋高中数学-指数函数及其性质第2课时指数函数及其性质的应用学案.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时指数函数及其性质的应用学习目标:1.掌握指数函数的性质并会应用,能利用指数函数的单调性比较幂的大小及解不等式(重点)2.通过本节内容的学习,进一步体会函数图象是研究函数的重要工具,并能运用指数函数研究一些实际问题(难点)合 作 探 究攻 重 难利用指数函数的单调性比较大小比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.61.2和0.61.5;(3)1.70.2和0.92.1;(4)a1.1与a0.3(a0且a1). 【导学号:37102243】解(1)1.52.5,1.53.2可看作函数y1.5x的两个函数值,由于底数1.51,所以函数y1.5x在R上是增函数,因为2.53.2,所以1.52.51.5,所以0.61.21.701,0.92.10.92.1.(4)当a1时,yax在R上是增函数,故a1.1a0.3;当0a1时,yax在R上是减函数,故a1.11和0a1两种情况分类讨论.跟踪训练1比较下列各值的大小:,2,3,.解先根据幂的特征,将这4个数分类:(1)负数:3;(2)大于1的数:,2;(3)大于0且小于1的数:.(2)中,22 (也可在同一平面直角坐标系中,分别作出yx,y2x的图象,再分别取x,x,比较对应函数值的大小,如图),故有32.利用指数函数的单调性解不等式(1)解不等式3x12;(2)已知ax23x10,a1),求x的取值范围. 【导学号:37102244】解(1)21,原不等式可以转化为3x11.yx在R上是减函数,3x11,x0,故原不等式的解集是x|x0(2)分情况讨论:当0a0,a1)在R上是减函数,x23x1x6,x24x50,根据相应二次函数的图象可得x5;当a1时,函数f(x)ax(a0,a1)在R上是增函数,x23x1x6,x24x50,根据相应二次函数的图象可得1x5.综上所述,当0a1时,x5;当a1时,1x53x(a0且a1),求x的取值范围解因为ax153x,所以ax1a3x5,当a1时,yax为增函数,可得x13x5,所以x3;当0a1时,yax为减函数,可得x13.综上,当a1时,x的取值范围为(,3);当0a0,且a1)的单调性与yx2的单调性存在怎样的关系?提示:分两类:(1)当a1时,函数yax2的单调性与yx2的单调性一致;(2)当0a1时,函数yax2的单调性与yx2的单调性相反判断f(x)x22x的单调性,并求其值域. 【导学号:37102245】思路探究:解令ux22x,则原函数变为yu.ux22x(x1)21在(,1上递减,在1,)上递增,又yu在(,)上递减,yx22x在(,1上递增,在1,)上递减ux22x(x1)211,yu,u1,),00,a1)的单调性的处理技巧(1)关于指数型函数yaf(x)(a0,且a1)的单调性由两点决定,一是底数a1还是0a1;二是f(x)的单调性,它由两个函数yau,uf(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成yf(u),u(x),通过考查f(u)和(x)的单调性,求出yf(x)的单调性.当 堂 达 标固 双 基1若2x11,则x的取值范围是()A(1,1)B(1,)C(0,1)(1,) D(,1)D2x1120,且y2x是增函数,x10,xf(n),则m,n的大小关系为_. 【导学号:37102247】mf(n),m0且a1)的图象经过点.(1)比较f(2)与f(b22)的大小;(2)求函数g(x)ax22x(x0)的值域解(1)由已知得a2,解得a,因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论