第四章 材料科学基础3ppt课件_第1页
第四章 材料科学基础3ppt课件_第2页
第四章 材料科学基础3ppt课件_第3页
第四章 材料科学基础3ppt课件_第4页
第四章 材料科学基础3ppt课件_第5页
已阅读5页,还剩98页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4 3典型的晶体结构及几何特征 晶体结构 晶体中原子 分子或离子 在空间的具体排列方式 晶体的几何特征 晶胞内的原子数 致密度 配位数 以及晶体间隙 4 3 1金属晶体结构 1 三种典型的金属的晶体结构最常见的金属晶体结构类型 面心立方结构 face centeredcubic fcc 体心立方结构 body centeredcubic bcc 密排六方结构 hexgonalcolsed packed hcp Fe Al Cu Ni Au Ag Pt等约20种金属是面心立方结构 刚球模型 晶胞原子数 质点模型 1 面心立方结构 face centeredcubic fcc a 晶胞中的原子数 8 1 8 6 1 2 4 b 晶胞常数与原子半径的关系 c 配位数与致密度 晶体中原子排列的紧密程度与晶体结构类型有关 为了定量地表示原子排列的紧密程度 采用配位数和致密度两个参数 配位数 CN coordinationnumber 晶体结构中 任一原子周围最近邻且等距的原子数 配位数越大 原子排列的紧密程度越高 致密度 APF atomicpackingfactor 晶体结构中各原子总体积占晶胞体积的百分比 2 体心立方结构 body centeredcubic bcc Fe Fe Cr W Mo V Nb等约30种金属是体心立方结构 刚球模型 质点模型 晶胞原子数 a 晶胞中的原子数 b 晶胞常数与原子半径的关系 c 配位数与致密度 3 密排六方结构 hexagonalclosed packed hcp Ti Be Zn Cd Mg等金属是密排六方结构 刚球模型 质点模型 晶胞原子数 a 晶胞中的原子数 b 晶胞常数与原子半径的关系 c 配位数与致密度 求解hcp的致密度 2 晶体的原子堆垛方式和间隙 1 晶体中原子堆垛方式 金属晶体中原子是以紧密堆积的形式存在的 在一层中 最紧密的堆积方式 是一个球与周围6个球相切 在中心的周围形成6个凹位 将其算为第一层 等径球在平面上最紧密堆垛方式 第二层对第一层来讲最紧密的堆积方式是将球对准1 3 5位 或对准2 4 6位 其情形是一样的 关键是第三层 对第一 二层来说 第三层可以有两种最紧密的堆积方式 下图是此种六方紧密堆积的前视图 A 第一种是将球对准第一层的球 于是每两层形成一个周期 即ABAB堆积方式 形成六方紧密堆积 配位数12 同层6 上下层各3 HCP hcp晶体的原子堆垛方式 ABAB 最密排面 0001 此种立方紧密堆积的前视图 A 第四层再排A 于是形成ABCABC三层一个周期 得到面心立方堆积 配位数12 同层6 上下层各3 FCC ABCABC形式的堆积 为什么是面心立方堆积 我们来加以说明 最密排面 111 fcc晶体的原子堆垛方式 ABCABC AB ABC 原子堆垛模型 这两种堆积都是最紧密堆积 空间利用率为74 2 晶体中原子间的间隙 由于球体之间是刚性点接触堆积 最紧密堆积中仍然有空隙存在 从形状上看 空隙有两种 一种是四面体空隙 由4个球体所构成 球心连线构成一个四面体 另一种是八面体空隙 由6个球体构成 球心连线形成一个八面体 显然 由同种球组成的四面体空隙小于八面体空隙 间隙大小的定义 如果将一个半径为r的小球放入间隙中 该球刚好和最近邻的基体原子相切 那么r就定义为间隙的半径 面心立方晶体 fcc 八面体间隙 fcc晶体十二条棱的中点和体心等价的位置 是八面体间隙的位置 数目共有个 八面体间隙半径r 四面体间隙 四面体间隙数目为8个 间隙半径r 体心立方晶体 bcc 八面体间隙 八面体间隙的中心为bcc晶体的面心和棱心 数目为6 间隙半径r 非正八面体 体心立方晶体 bcc 四面体间隙 四面体间隙的数目为12个 间隙半径r 非正四面体 体心立方四面体间隙包含在八面体间隙中 为什么不把四面体间隙简单地看成为八面体间隙的一部分 理由是 若在四面体间隙内嵌入一个最大尺寸的球 它就会陷在那里而不能自由地移到八面体间隙 所以虽然四面体间隙的位置处于八面体间隙之中 但并不失其四面体间隙的特点 密排六方晶体 hcp 八面体间隙 间隙位于正八面体的中心 处于高度为c 4和3c 4处八面体间隙的数目为6个 间隙半径r 密排六方晶体 hcp 四面体间隙 间隙半径r 间隙中心位置 7c 8 1c 8 5c 8 3c 8 在有中心原子的相间的三个三角柱体中 每个三角柱体中各有2个 C轴上有2个 六方柱体的每根棱上有2个 合计 3 2 2 6 2 3 12个 三种典型晶体中的间隙 几点说明 1 fcc和hcp都是密排结构 而bcc则是比较 开放 的结构 因为它的间隙较多 因此 碳 氮 氢 氧 硼等原子半径较小的元素 即间隙原子 在bcc金属中的扩散速率往往比在fcc及hcp金属中高得多 2 fcc和hcp金属中的八面体间隙大于四面体间隙 故这些金属中的间隙原子往往位于八面体间隙中 3 fcc和hcp中的八面体间隙远大于bcc中的八面体或四面体间隙 因而间隙原子在fcc和hcp中的固溶度往往比在bcc中大得多 3 金属晶体的密度计算 若已知某种金属晶体的晶体结构 则可根据下式算出晶体的理论密度 n 单个晶胞中的原子数目 个 A 原子的摩尔质量 g mol NA 阿伏伽德罗常数 6 02 1023个 mol Vc 晶胞体积 cm3 例题1 已知Cu原子半径为0 128nm 摩尔质量为63 5g mol Cu金属的晶体结构为fcc结构 计算这种Cu金属的理论密度 并与实际密度相比较 实际密度为8 92g cm3 作业 1 已知BCC结构的Fe晶体中 它的晶格常数a为0 2866nm Fe原子的摩尔质量为55 847g mol 求BCC结构的Fe金属的理论密度 2 已知Zr的晶体结构为HCP 它的密度为6 51g cm3 求 a 它的晶胞体积 b 如果c a比为1 593 分别计算a c值 4 晶体的多晶型性 4 3 2陶瓷晶体结构 陶瓷是由离子键或兼有离子键和共价键的方式结合而成的复杂化合物 陶瓷晶体按结合键类型分为离子晶体和共价晶体 其中离子晶体占大多数 不等径球体的紧密堆积 当大小不等的球体进行堆积时 其中较大的球将按六方和立方最紧密堆积方式进行堆积 而较小的球则按自身体积的大小填入其中的八面体空隙中或四面体空隙中 离子化合物晶体 离子晶体的结构 阴离子 负离子 大球 密堆积 形成间隙阳离子 正离子 小球 填充间隙规则 阴阳离子相互接触稳定配位数大稳定 2 第二规则 电价规则 由于在形成每一个离子键时正离子给出的价电子数应等于负离子得到的价电子数 式中Z 和Z 分别是正 负离子的电价 即金属元素和非金属元素的原子价 CN 和CN 分别是正离子和负离子的配位数 电价规则 对于规则多面体配位结构是比较严格的规则 a 共顶点配位四面体 b 共棱配位四面体 c 共面配位四面体 d 共顶点配位八面体 e 共棱配位八面体 f 共顶点配位八面体 两个配位多面体连接时 随着共用定点数目的增加 中心阳离子之间距离缩短 库伦斥力增大 结构稳定性降低 4 不同种类正离子多面体间连接规则 鲍林第四规则 当晶体中存在一种以上的正离子时 就会产生一种以上的配位多面体 这些正离子的电价有高有低 配位数有多有小 那么它们之间是怎样连接呢 根据鲍林第三规则 高电价 低配位的正离子配位多面体应尽量互不连接 引出鲍林第四规则 在含有一种以上正离子的晶体中 电价大 配位数小的那些正离子之间 有尽量互不结合的趋势 特别倾向于共顶相连 5 节约规则 鲍林第五规则 同一晶体中 同种正离子和同种负离子的结合方式应最大限度地趋于一致 或者说 晶体中配位多面体类型倾向于最少 因为在一个均匀稳定的结构中 不同尺度 形状的配位多面体很难有效地堆积在一起 好比 用瓷砖拼一个地板 对只用一种规则形状如四方形 菱形 正三角形等很能容易拼成一个紧密接触的地板 若用两种形状瓷砖就困难一些 用多种陶瓷砖就更困难 或不可能拼成一个紧密排列的地板 第一规则 由r r 正负离子形成一个怎样的配位关系 四面体 八面体 第二规则 由电中性 配位多面体间连接方式 几个多面体相连 第三规则 配位多面间怎样连接最稳定 第四规则 有几种正离子 电价大 配位数小的正离子配位多面体 尽量互不结余第五规则 配位多面体类型趋于最少 这五个规则 是在分析 研究大量晶体内部结构的基础上建立的 是离子化合物晶体结构规律性的具体概括 适合于绝大多数离子晶体 特别是在分析比较复杂的晶体结构时 有较大的帮助 一种原子占据晶胞的结点 另一种占据体心位置 是由两个简单立方点阵穿插而成 Cl 构成面心立方点阵 Na 占据其全部八面体间隙 两个面心立方分点阵穿插而成的迭结构 或超结构 MgO CaO FeO TiN TiC MnO 其中S2 占据FCC晶胞结点 Zn2 占据四个不相邻的四面体间隙 同构化合物 SiC GaAs AlP InSb 其中SiC为高温材料 GaAs为半导体材料 简单六方 S占据结点 Zn占据四面体间隙 相同结构的有 BeO ZnO AlN 其中 BeO为优质耐热材料 反应堆结构材料 ZnO为半导体材料 用于非线性变阻器 结构 面心立方 Ca2 占据结点 F 占据所有四面体间隙 金红石是TiO2的一种常见的稳定结构 此外TiO2还有板钛矿及锐钛矿结构 也是陶瓷材料中比较重要的一种结构 它具有立方体心结构 每个晶胞中含有两个Ti4 离子 紫球 和4个O2 离子 绿球 用途 重要的电容器材料和光催化材料 4 3 3合金相的晶体结构 1 基本概念合金 alloy 由两种或两种以上的金属或金属与非金属经熔炼 烧结或其他方法组合而成并具有金属特性的物质 组元 component 组成合金的基本的独立的物质 组元可以是金属和非金属元素 也可以是化合物 合金系 alloysystem 由给定组元配置成的一系列成分不同的合金组成的合金系统 两个组元组成的为二元系 三个组元组成的为三元系 更多组元组成的称为多元系 相 phase 合金中具有同一聚集状态 同一晶体结构和性质并以界面相互隔开的均匀组成部分 合金在固态下可以形成均匀的单相合金 也可能是由几种不同的相所组成的多相合金 在液态下 大多数合金的组元均能相互溶解 称为均匀的液体 因而只具有一个液相 在凝固后 由于各组元的晶体结构 原子结构等不同 各组元间的相互作用不同 在固态合金中可能出现不同的相结构 phasestructure 主要有固溶体 solidsolution 和金属化合物 intermetalliccompound 两大类 统称合金相 合金相 固溶体 solidsolution 金属化合物 intermetalliccompound 固溶体 solidsolution 溶质原子融入固态的溶剂中 并保持溶剂晶格类型而形成的相 2 固溶体 1 置换固溶体 溶质原子位于晶格点阵位置的固溶体 影响置换固溶体溶解度的因素 a 原子尺寸 原子尺寸差越小 越易形成置换固溶体 且溶解度越大 b 晶体结构 结构相同 溶解度大 晶体结构相同是组元间形成无限固溶体的必要条件 c 电负性 电负性差 X0 4 0 5 倾向于形成稳定的化合物 d 电子浓度 电子浓度 合金中价电子数目与原子数目的比值 e a越大 溶解度越小 价电子浓度 或简称电子浓度 是指合金中每个原子平均的价电子数 用e a表示 对于由1 2 m等组元形成的m元合金 我们有 e a Z1C1 Z2C2 ZmCm 式中Zi i 1 m 为组元i的原子价电子数 Ci为组元i的原子百分数 C1 C2 Cm 1 对于第VIII族组元 规定其价电子数为零 Z 0 而对其它组元 价电子数就等于它在周期表中的族数 Z N 例如 对60at Cu 40at Zn这个二元合金 e a 1X0 60 2X0 40 1 40 2 间隙固溶体 溶质原子分布于溶剂晶格间隙而形成的固溶体 3 固溶体的结构 a 晶格畸变形成固溶体时 虽然仍保持溶剂的晶体结构 但由于溶质原子的大小与溶剂不同 形成固溶体时必然产生晶格畸变 或称点阵畸变 b 微观不均匀性在固溶体中 溶质原子分布可能是无序 Random 的 即它们呈统计分布 也可能是部分和完全有序 Ordered 的 但完全有序的固溶体 通常把他归类为化合物 溶质原子完全无序分布仅是一种理想情况 处于热力学平衡的固溶体可认为在宏观尺度是均匀的 而在原子尺度是不均匀的 固溶体中溶质原子的不均匀分布会形成丛聚 偏聚 cluster 或短程有序 2 固溶体的性质与纯金属相比 由于溶质原子的融入导致固溶体晶格畸变 或称点阵畸变 导致力学性能 物理和化学性能产生了不同程度的变化 3 金属 间 化合物 P37 定义 合金中各组元发生化学的相互作用 形成的晶体结构不同于任一组元 在相图上处于中间位置的新相 又称为中间相 分类 1 正常价化合物 2 电子化合物 3 尺寸化合物 间隙相 间隙化合物 拓扑密堆相 P42 合金相的类型 根据合金相在相图中的位置可以将其分为固溶体 端部固溶体 和中间相 中间 二次固溶体 两大类 中间相 在相图中间位置 都是化合物 晶体结构和组成它们的组元不相同 为中间相 中间相也可能有一定的固溶度 注意 由于中间 二次固溶体的结构不同于组成固溶体的任何一个组元 故近年来中间固溶体 二次固溶体 这个名称已不复采用 金属化合物的基本特点 1 可用化学分子式表示 其成分可在一定范围内变化 但并不一定遵循化合价规律的化合物 如 Cu5Zn82 结合以金属键结合为主 保留金属特性 3 具有不同于组成金属化合物组元的另一种新的结构 如 Cu为fcc Zn为hcp Cu5Zn8具有复杂立方结构 4 性能不同于组成中间相的纯组元 一些中间相熔点 硬度很高 一些中间相熔点较低 脆性大 一些中间相具有特殊的物理化学性能 如具有超导性 强磁性 耐热 耐蚀 具有形状记忆效应等 5 中间相的形成也受原子尺寸 电子浓度 化学亲和力等因素的影响 1 正常价化合物 P52 化学价规律 即各组元的价电子数之和为8 按化学分子式 正常价化合物一般有AB AB2 或A2B 等类型 其晶体点阵对应于具有同类化学分子式的离子化合物点阵类型 如AB型正常价金属间化合物与典型的离子化合物NaCl或ZnS具有相似的点阵类型 AB2与典型的CaF2点阵类型相似 A2B与反CaF2点阵类型相似 但其性能却由于组元不同而有所不同 P52表2 4 CaF2型点阵中 对调两种离子的位置 则构成反CaF2点阵 各种正常价化合物 2 电子化合物 电子相 不遵循正常化合价规律 结构受电子浓度控制的金属化合物 Hume Ruthery等发现很多化合物当它的电子浓度相同时 会出现相同的结构 这类化合物称电子化合物或Home Ruthery相 晶体结构与电子浓度的对应关系 1 电子浓度3 2 21 14 时 体心立方结构的 相 黄铜结构 如 CuZn AgZn AuZn 密排六方结构的 相 如Cu3Ga 组成电子相的2个组元的原子尺寸相差大时 倾向与形成体心立方结构的 相 若原子尺寸相差小时倾向出现密排六方结构的 相 少数合金出现复杂立方的 Mn结构 如Cu5Si 2 电子浓度为21 13时 在很多合金中出现复杂立方的 相 黄铜结构 如 Cu5Zn8 3 当电子浓度为7 4 21 12时密排六方结构 相 其轴比c a比理想轴比小 约为1 55 1 58 如 CuZn3 Cu3Sn AuZn3等 间隙相 简单间隙化合物 P56 定义 非金属的原子半径 rX 与金属的原子半径 rM 之比小于0 59时形成的具有简单结构的金属化合物 形成 过渡族金属元素与H N C B等形成 特点 1 具有简单的化学式 如MX M2X MX2等 2 金属原子组成简单点阵并与其为纯金属时的结构不同 如 VC V为bcc C原子存在八面体间隙中 VC为fcc 不能理解为纯几何性的填充间隙 有电化学因素起作用 3 尺寸化合物 晶体结构主要由原子尺寸决定 这样的金属化合物称为尺寸化合物 包括间隙相 间隙化合物 拓扑密堆相三种类型 间隙相性能 具有明显的金属性 具有极高的熔点 具有极高的硬度 是钢中重要的强化相 如 NbC的熔点3770 硬度2050HV VC的熔点3023 硬度2010HV 间隙相与间隙固溶体的异同 相同处 1 均由过渡族金属和原子半径小于0 1nm的非金属元素组成 2 rB rA 0 59 不同处 1 间隙固溶体保持溶剂的晶体结构 间隙相为新的晶体结构 2 间隙相组元比例满足简单化学式 间隙固溶体无此关系 3 性能上 间隙相的熔点和硬度高于间隙固溶体 间隙化合物 复杂间隙化合物 定义 rX rM 0 59时形成的具有复杂结构的金属化合物 组成 过渡族金属Fe Cr Mn Mo W等与C原子形成的碳化物 类型 M3C M6C M23C6型等M3C型 Fe3C Ni3C Co3C 正交晶系复杂结构 一个晶胞有16个原子 其中12个金属原子 4个碳原子 M6C型 Fe3W3C Fe2W4C Fe3Mo3C 面心立方复杂结构 M23C6型 Cr23C6 Fe21W2C6 面心立方复杂结构 M7C3型 Cr7C3 简单六方结构 一个晶胞中有112个原子 其中96个金属原子 16个碳原子 一个晶胞中有116个原子 其中92个金属原子 24个碳原子 结合键 Fe3C中各铁原子之间是纯金属键 铁原子和碳原子之间可能同时存在金属键和离子键 间隙化合物的性能 具有明显的金属性 具有高的熔点和硬度 比间隙相要低些 拓朴密堆相 TopologicallyClose packedPhase 定义 合金中 由于各元素原子尺寸不同的 进行适当配合得到主要以四面体形式堆垛的CN比12大的 例如CN 12 14 15 16等 并且致密度大于0 74的结构 刚性球模型 同类型原子最紧密堆垛的配位数只能是12 致密度0 74 形成TCP相的关键条件 大小原子适当配合 原子尺寸因素是影响TCP相的主要因素 TCP相的结构特点 1 空间堆垛 由CN12 CN14 CN15 CN16的配位多面体堆垛堆成 配位多面体 把晶体点阵中一个原子周围最近邻原子的中心连接起来所构成的多面体 多面体的每个面都是三角形 拓朴密堆相可以看成由配位多面体堆垛而成 配位数 指多面体中心原子周围的近邻原子数CN12的20面体CN14的24面体 配位多面体的种类 CN15的26面体CN16的28面体 2 原子层堆垛 为层状结构 主层 由较小的原子排列 排列成三角形 四角形和六角形网络图案 次层 尺寸较大的原子常组成次层 次层原子位置对应着主层最大空隙处 主层网络结构通常用如下符号表示 取网络中任一原子 依次写出围绕着它的多边形类型 例如三角形为3 四边形为4 等 拓朴密堆相结构又可看成由原子密排层堆垛的层状结构 如果有n个相邻接的m边形 则记为mn 如图 b 的网络 符号44 图 c 1个原子由3个相邻接的三角形以及2个相邻接的四边形围绕 符号记为33 42 d 32 4 3 4型 e 6 3 6 3型 f 63型 TCP相的类型 1 Laves相 p54 通式为AB2的化合物 借助于两种不同大小的原子配合排列成密堆结构 称为Laves相 形成条件 原子尺寸 理论上Laves相的A原子和B原子半径比值rA rB为1 255 实际上这比值约在1 05 1 68范围内 电子浓度 一定的结构类型对应一定的电子浓度 Laves相的晶体结构MgCu2 复杂立方 型 电子浓度1 33 1 75MgZn2 复杂六方 型 电子浓度1 80 2 00MgNi2 复杂六方 型 电子浓度1 80 1 90 最多的是MgCu2型结构 其次为MgZn2型结构 极少数为MgNi2型结构 MgCu2 立方结构 MgCu2型结构的晶胞如图所示 一个晶胞中含8个Mg原子 16个Cu原子 大晶胞分为8个小立方体 Mg原子处在大立方体8个顶点 6个面心以及在晶胞内相间的4个小立方体中心位置 另外4个小立方体内各有1个以Cu原子组成的四面体 四面体中心和小立方体中心重合 一个晶胞有8个Mg原子16个Cu原子 许多合金系能形成Laves相 例如在合金钢中原子尺寸较小的合金元素锰 镍 铬可以置换铁的位置与尺寸大的合金元素钨 钼 铌等形成 W Mo Nb Fe Ni Mn Cr 2的Laves相 在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论