




已阅读5页,还剩46页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章相交线与平行线的复习课,1、进一步巩固邻补角、对顶角的概念和性质,2、理解垂线、垂线段的概念和性质,3、掌握两条直线平行的判定和性质,一、学习目标,4、通过平移,理解图形平移变换的性质,5、能区分命题的题设和结论以及命题的真假,相交线,两条直线相交,两条直线被第三条所截,一般情况,邻补角,对顶角,邻补角互补,对顶角相等,特殊,垂直,存在性和唯一性,垂线段最短,点到直线的距离,同位角、内错角、同旁内角,平行线,平行公理及其推论,平行线的判定,平行线的性质,两条平行线的距离,平移,平移的特征,命题、定理,知识构图,2.对顶角:(1)两条直线相交所构成的四个角中,,有公共顶点但没有公共边的两个角是对顶角。如图(2).,(2)一个角的两边分别是另一个角的两边的反向延长线,这两个角是对顶角。,3.邻补角的性质:同角的补角相等。,4.对顶角性质:对顶角相等。,两个特征:(1)具有公共顶点;(2)角的两边互为反向延长线。,n条直线相交于一点,就有n(n-1)对对顶角。,1.互为邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角.如图(1),A,B,C,D,O,在解决与角的计算有关的问题时,经常用到代数方法。,解:设AOC=2x,则AOD=3x,所以2x+3x=180,因为AOC+AOD=180,解得x=36,所以AOC=2x=72,BOD=AOC=72,答:BOD的度数是72,O,A,B,C,D,E,F,例2.已知直线AB、CD、EF相交于点O,,解:因为直线AB与EF相交与点O,所以AOE+BOE=180,因为AOE=36,所以BOE=180-AOE,=180-36=144,因为DOE=90,所以AOD=AOE+DOE=126,又因为BOC与AOD是对顶角,所以BOC=AOD=126,1.垂线的定义:两条直线相交,所构成的四个角中,有一个角是90时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线。它们的交点叫垂足。,2.垂线的性质:(1)过一点有且只有一条直线与已知直线垂直。(2):直线外一点与直线上各点连结的所有线段中,垂线段最短。简称:垂线段最短。,3.点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。,4.如遇到线段与线段,线段与射线,射线与射线,线段或射线与直线垂直时,特指它们所在的直线互相垂直。,5.垂线是直线,垂线段特指一条线段是图形,点到直线距离是指垂线段的长度,是指一个数量,是有单位的。,垂线,A,B,C,D,O,E,此题需要正确地应用、对顶角、邻补角、垂直的概念和性质。,O,A,D,C,B,由垂直先找到90的角,再根据角之间的关系求解。,C,理由:垂线段最短,例3:如图,要把水渠中的水引到水池C中,在渠岸的什么地方开沟,水沟的长度才能最短?请画出图来,并说明理由。,A,D,C,B,E,F,例4:你能量出C到AB的距离,B到AC的距离,A到BC的距离吗?,思考:三角形的三条垂线有什么特点?,三角形的三条垂线都交于一点;,锐角三角形的三条垂线交点在三角形的内部;,直角三角形的三条垂线交点在直角顶点;,钝角三角形的三条垂线交点在三角形的外部;,例5:你能画出ABC三点到对边的垂线吗?,在如图所示的三角形中,说出下列点到线段的距离分别是哪一条线段的长度,点C到线段AB的距离,点A到线段BC的距离,点B到线段AC的距离,AC,CD,BC,BD是点到线段的距离,B,CD,平行线的概念:在同一平面内,不相交的两条直线叫做平行线。,2.两直线的位置关系:在同一平面内,两直线的位置关系只有两种:(1)相交;(2)平行。,3.平行线的基本性质:,(1)平行公理(平行线的存在性和唯一性)经过直线外一点,有且只有一条直线与已知直线平行。,(2)推论(平行线的传递性)如果两条直线都和第三条直线平行,那么这两条直线也互相平行。,4.同位角、内错角、同旁内角的概念,同位角、内错角、同旁内角,指的是一条直线分别与两条直线相交构成的八个角中,不共顶点的角之间的特殊位置关系。它们与对顶角、邻补角一样,总是成对存在着的。,平行,1、同位角的位置特征是:,2、内错角的位置特征是:,3、同旁内角的位置特征是:,(1)在截线的同旁,,(2)在被截两直线的同方向。,(1)在截线的两旁,,(2)在被截两直线之间。,(1)在截线的同旁,,(2)在被截两直线之间。,被截线,截线,三线八角,(1)定义法;在同一平面内不相交的两条直线是平行线。,(2)传递法;两条直线都和第三条直线平行,这两条直线也平行。,(4)三种角判定(3种方法):,在这六种方法中,定义一般不常用。,同位角相等,两直线平行。,内错角相等,两直线平行。,同旁内角互补,两直线平行。,(3)因为ac,ab;所以b/c,判定两直线平行的方法有三种:,1和2不是同位角,,如图中的1和2是同位角吗?为什么?,1和2无一边共线。,1和2是同位角,,1和2有一边共线、同向,且不共顶点。,练一练,A,C,B,D,E,1,2,答:EAC,答:DAB,答:BAC,BAE,2,1与哪个角是同旁内角?,2与哪个角是内错角?,例1.1与哪个角是内错角?,证明:DAC=ACB(已知),A,B,C,D,E,F,AD/BC,(内错角相等,两直线平行),D+DFE=180(已知),AD/EF,(同旁内角互补,两直线平行),EF/BC,(平行于同一条直线的两条直线互相平行),例2.已知DAC=ACB,D+DFE=1800,求证:EF/BC,平行线的判定,条件,结论,同位角相等,内错角相等,同旁内角互补,条件,同位角相等,内错角相等,同旁内角互补,结论,两直线平行,夹在两平行线间的垂线段的长度,叫做两平行线间的距离。,平行线的性质,4、操作与解释:,数学课上有这样一道题:“如图,以点B为顶点,射线BC为一边,利用尺规作EBC,使得EBC=A,EB与AD一定平行吗?”。小王说“一定平行”;而小李说“不一定平行”。你更赞同谁的观点?,5、探索与思考:,有一条直的等宽纸带,按如图所示折叠时,1=30求纸带重叠部分中CAB的度数。,已知:ABCD。试探索A、C与AEC之间的关系;B、D与BFD之间的关系。,几何之旅,证明:由:1+2=180(已知),(同旁内角互补,两直线平行),1=3(对顶角相等),2=4(对顶角相等),所以3+4=180,(等量代换),AB/CD.,例1.如图已知:1+2=180,求证:ABCD。,EFAB,CDAB(已知),EF/CD,(垂直于同一条直线的两条直线互相平行),EFBDCB,(两直线平行,同位角相等),EFB=GDC(已知),DCB=GDC(等量代换),DGBC,(内错角相等,两直线平行),AGD=ACB,(两直线平行,同位角相等),证明:,例3.已知EFAB,CDAB,EFB=GDC,求证:AGD=ACB。,如图,两平面镜、的夹角为,入射光线AO平行于入射到上,经两次反射后的反射光线OB平行于,且1=2,3=4,则角=_度,O,B,A,1,2,3,4,5,例4.两块平面镜的夹角应为多少度?,分析:由题意有OA/,OBa,且1=2,3=4,,由OA/,1=,OBa,4=,2=5,所以3=4=5=,因为3+4+5=180,所以3=60,即=60,1.命题的概念:判断一件事情的句子,叫做命题。命题必须是一个完整的句子;这个句子必须对某件事情做出肯定或者否定的判断。两者缺一不可。,2.命题的组成:每个命题是由题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果,那么”的形式。或“若,则”等形式。真命题和假命题:命题是一个判断,这个判断可能是正确的,也可以是错误的。由此可以把命题分成真命题和假命题。真命题就是:如果题设成立,那么结论一定成立的命题。假命题就是:如果题设成立时,不能保证结论总是成立的命题。,命题,画线段AB=2cm直角都相等;两条直线相交,有几个交点?如果两个角不相等,那么这两个角不是对顶角。相等的角都是直角;,分析:因为(1)、(3)不是对某一件事作出判断的句子,所以(1)、(3)不是命题。解.(1)、(3)不是命题;(2)、(4)、(5)是命题;(2)、(4)都是真命,(5)是假命题。,例1.判断下列语句,是不是命题,如果是命题,是真命题,还是假命题?,A,B,C,D,分析:不妨选择(1)与(2)作条件,由平行性质“两直线平行,同旁内角互补”可得A=C,故满足要求。由(1)与(3)也能得出(2)成立,由(2)与(3)也能得出(1)成立。,解:如果在四边形ABCD中,AB/DC、AD/BC,那么A=C。,例2.如图给出下列论断:(1)AB/CD(2)AD/BC(3)A=C以上,其中两个作为题设,另一个作为结论,用“如果,那么”的形式,写出一个你认为正确的命题。,课堂练习,1、下列命题是真命题的有()A、相等的角是对顶角B、不是对顶角的角不相等C、对顶角必相等D、有公共顶点的角是对顶角E、邻补角的和一定是180度F、互补的两个角一定是邻补角G、两条直线相交,只要其中一个角的大小确定了那么另外三个角的大小就确定了,C、E、G,1.平移变换的定义:把一个图形整体沿某一方向移动,会得到一个新图形,这样的图形运动,叫做平移变换,简称平移。平移的特征:(1)平移不改变图形的形状和大小。(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,对应点连结而成的线段平行且相等。决定平移的因素是平移的方向和距离。经过平移,图形上的每一点都沿同一方向移动相同的距离。经过平移,对应角相等;对应线段平行且相等;对应点所连的线段平行且相等。,平移,站在运动着的电梯上的人左右推动的推拉窗扇小李荡秋千运动躺在火车上睡觉的旅客,分析:A、B、D属平移,在一个位置取两点连成一条线,在另一个位置再观察这条线段,发现是平行的,而C同样取两点连成一条线段,运动到另一位置时,可能已不平行,解:选C,例1.在以下生活现象中,不是平移现象的是,例2.如图所示,ABC平移到ABC的位置,则点A的对应点是_,点B的对应点是_,点C的对应点是_。线段AB的对应线段是_,线段BC的对应线段是_,线段AC的对应线段是_。BAC的对应角是_,ABC的对应角是_,ACB的对应角是_。ABC的平移方向是_,平移距离是_。,A,B,C,A,B,C,A,B,C,沿着射线AA,(或BB,或CC)的方向,线段AA的长,(或线段BB的长或线段CC的长,填空题,2.下列生活中的物体的运动情况可以看成平移的是()(1)摆动的钟摆(2)在笔直的公路上行驶的汽车(3)随风摆动的旗帜(4)摇动的大绳(5)汽车玻璃上雨刷的运动(6)从楼梯自由落下的球(球不旋转),小结:,1、邻补角、对顶角的概念和性质,2、垂线画法、垂线段的性质,3、平行线的判定和性质,4、命题的题设与结论以及命题的真假,5、平移的概念和平移的性质,如图,已知1=2,直线AC、BE交于B,A+C=1800,求证:AF/BE,证明:1=2(已知)BE/CD(内错角相等,两直线平行)又A+C=1800(已知)AF/CD(同旁内角互补,两直线平行)AF/BE(平行于同一条直线的两条直线互相平行),D,A,B,C,E,F,2,如图,平行线AB、CD被直线AE所截,已知1=110o,则2、3、4分别是多少度?为什么?,答:2=110o,因为两直线平行,内错角相等,2=1,3=110o,因为两直线平行,同位角相等,3=1,4=180o110o=70o,因为两直线平行,同旁内角互补。,如图,已知:ADBC,AEF=B,求证:ADEF。证明:ADBC(已知)A+B180(两直线平行,同旁内角互补)AEF=B(已知)AAEF180(等量代换)ADEF(同旁内角互补,两条直线平行),例2:如图,已知:AE平分BAC,CE平分ACD,且ABCD。求证:12=90证明:ABCD(已知)BACACD=180(两条直线平行,同旁内角互补)又AE平分BAC,CE平分ACD(已知)1BAC,2ACD(角平分线的定义)1+2(BACACD)(等式的性质)1800900即12=900,例5:如图,已知:ABCD,AC,求证:ADBC。证明:ABCD(已知)AD=180(两条直线平行,同旁内角互补)AC(已知)CD=180(等量代换)ADBC(同旁内角互补,两条直线平行),如图2-73。已知:1=2,AC平分DAB,求证:ABCD。,1,8.如图,已知:ACDE,1=2,试证明ABCD.,证明:由ACDE(已知)ACD=2(两直线平行,内错角相等)1=2(已知)1=ACD(等量代换)ABCD(内错角相等,两直线平行),巩固提高,3.如图所示,1=2,BAC=20,ACF=80.(1)求2的度数;(2)FC与AD平行吗?为什么?,巩固提高,4.如图所示,已知1=2,3+4=180,则a与c平行吗?为什么?,巩固提高,5.如图所示,如果1=47,2=133,D=47,那么BC与DE平行吗?AB与CD平行吗?,巩固提高,6.如图所示,已知D=A,B=FCB,试问ED与CF平行吗?,巩固提高,7.已知,如图,点B在AC上,BDBE,1+C=90,问射线CF与BD平行吗?试用两种方法说明理由.,如图,BHE与BGF互为补角,D=A求证:B=C,综合应用,观察图形中的B与C具有怎样的位置关系?AB与CD具有怎样的位置关系时,才能说明B=C?由已知条件能说明AB与CD平行吗?,问题分析:,如图,BHE与BGF互为补角,D=A求证:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入院护理流程课件
- 邮政集中采购管理办法
- 2025生殖健康咨询师题库检测试题附完整答案详解【各地真题】
- 超分子分离详解
- 环境执法证件管理办法
- 企业安全按月培训内容课件
- 2025版权质押合同(合同范本)
- 2025合同签订关键要点指导
- 冲床使用安全培训课件
- 冲压设备安全培训大纲课件
- 《高精度三维地震采集设计技术规范》
- 新建四塔流动床项目立项申请报告
- 电工培训课件-时间继电器
- 《采购的沟通与谈判》课件
- 船舶结构与设备课件-第四章-系泊设备
- 初一新生家长会(共27张课件)
- 玉米收割合同范例
- 文书模板-《终止妊娠委托书》
- 三人开早餐店协议书范文模板
- 广东省珠海市文园中学2024-2025学年七年级上学期11月期中考试数学试题(无答案)
- 批判性思维能力测量表(CDTI-CV)-彭美慈
评论
0/150
提交评论