2014年江苏省各市中考汇编—四边形_第1页
2014年江苏省各市中考汇编—四边形_第2页
2014年江苏省各市中考汇编—四边形_第3页
2014年江苏省各市中考汇编—四边形_第4页
2014年江苏省各市中考汇编—四边形_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014年江苏省各市中考汇编第六部分 四边形的综合运用1、如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作O,点F为O与射线BD的公共点,连接EF、CF,过点E作EGEF,EG与O相交于点G,连接CG(1) 试说明四边形EFCG是矩形;(2) 当O与射线BD相切时,点E停止移动在点E移动的过程中, 矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由; 求点G移动路线的长2、如图,BD是ABC的角平分线,点E,F分别在BC、AB上,且DEAB,EFAC(1)求证:BE=AF;(2)若ABC=60,BD=6,求四边形ADEF的面积3、如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MGEM,交直线BC于G(1)若M为边AD中点,求证:EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;4、【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在ABC中,AB=AC,点P为边BC上的任一点,过点P作PDAB,PEAC,垂足分别为D、E,过点C作CFAB,垂足为F求证:PD+PE=CF小军的证明思路是:如图2,连接AP,由ABP与ACP面积之和等于ABC的面积可以证得:PD+PE=CF小俊的证明思路是:如图2,过点P作PGCF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PDPE=CF;请运用上述解答中所积累的经验和方法完成下列两题:【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C处,点P为折痕EF上的任一点,过点P作PGBE、PHBC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;5、我们知道平行四边形有很多性质.现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.【发现与证明】ABCD中,ABBC,将ABC沿AC翻折至ABC,连结BD.结论1:BDAC;结论2:ABC与ABCD重叠部分的图形是等腰三角形.请利用图1证明结论1或结论2(只需证明一个结论)【应用与探究】在ABCD中,已知B=30,将ABC沿AC翻折至ABC,连结BD.(1)如图1,若,则ACB= ,BC= ;(2)如图2,BC=1,AB与边CD相交于点E,求AEC的面积;(3)已知,当BC长为多少时,是ABD直角三角形?6、某数学兴趣小组对线段上的动点问题进行探究,已知AB=8问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在APK、ADK、DFK中,是否存在两个面积始终相等的三角形?请说明理由问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8若点P从点A出发,沿ABCD的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值7、如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR设运动时间为t秒(1)当t= 时,PQR的边QR经过点B;(2)设PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作EFBC,垂足为F,当PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若MAN=45,求t的值8、如图,已知BAD和BCE均为等腰直角三角形,BAD=BCE=90,点M为DE的中点,过点E与AD平行的直线交射线AM于点N(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:ACN为等腰直角三角形;(3)将图1中BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由9、在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作M . 使M与直线OM的另一交点为点B,与轴, 轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点. (1)写出AMB的度数;(2)点Q在射线OP上,且OPOQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E.当动点P与点B重合时,求点E的坐标;连接QD,设点Q的纵坐标为,QOD的面积为S.求S与的函数关系式及S的取值范围.补充:10、已知:如图,在矩形ABCD中,AB=5,AD=,AEBD,垂足是E点F是点E关于AB的对称点,连接AF、BF(1)求AE和BE的长;(2)若将ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度)当点F分别平移到线段AB、AD上时,直接写出相应的m的值(3)如图,将ABF绕点B顺时针旋转一个角(0180),记旋转中的ABF为ABF,在旋转过程中,设AF所在的直线与直线AD交于点P,与直线BD交于点Q是否存在这样的P、Q两点,使DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由2015年江苏省各市中考数学四边形汇编1、如图,AB CD,点E、F分别在AB、CD上,连接EF,AEF、CFE的平分线交于点G,BEF、DFE的平分线交于点H(1) 求证:四边形EGFH是矩形(2) 小明在完成(1)的证明后继续进行了探索过G作MN EF,分别交AB、CD于点M、N,过H作PQ EF,分别交AB、CD于点P、Q,得到四边形MNQP此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路小明的证明思路由ABCD,MNEF,PQEF,易证四边形MNQP是平行四边形要证MNQP是菱形, 只要证NM=NQ由已知条件, MN EF,可证NG = NF,故只要证 GM = FQ,即证MGE QFH易证 , , 故只要证 MGE = QFH,QFH = GEF,QFH=EFH,即可得证2、如图,把EFP按图所示的方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF= ,BAD=60,且AB .(1)求EPF的大小;(2)若AP=6,求AE+AF的值;(3)若EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.3、如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由;(3)求四边形EFGH面积的最小值。4、在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上(1)小明发现DGBE,请你帮他说明理由(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出GHE与BHD面积之和的最大值,并简要说明理由5、阅读理解: 如图,如果四边形ABCD满足AB=AD,CB=CD,B=D=900,那么我们把这样的四边形叫做“完美筝形”。将一张如图所示的“完美筝形”纸片ABCD先折叠成如图所示的形状,再展开得到图,其中CE、CF为折痕,BCD=ECF=FCD,点B为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论