




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
05年-2017年成都二次函数05年24. 已知二次函数y=的图像与轴的一个交点为A(-2,0),那么该二次函数图像的顶点坐标为_。30. 已知抛物线与轴交于不同的两点A 和B ,与轴的正半轴交于点C,如果是方程的两个根 ,且ABC的面积为。求此抛物线的解析式;求直线AC和BC的方程;如果P是线段AC上的一个动点(不与点A、C重合),过点F作直线 (为常数),与直线BC交于点Q,则在轴上是否存在点R,使得以PQ为一腰的PRQ为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由。 06年28如图,在平面直角坐标系中,已知点,以为边在轴下方作正方形,点是线段与正方形的外接圆除点以外的另一个交点,连结与相交于点(1)求证:;(2)设直线是的边的垂直平分线,且与相交于点若是的外心,试求经过三点的抛物线的解析表达式;AEODCBGFxyl(3)在(2)的条件下,在抛物线上是否存在点,使该点关于直线的对称点在轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由07年 15如图所示的抛物线是二次函数的图象,那么的值是 28在平面直角坐标系中,已知二次函数的图象与轴交于两点(点在点的左边),与轴交于点,其顶点的横坐标为1,且过点和(1)求此二次函数的表达式;(2)若直线与线段交于点(不与点重合),则是否存在这样的直线,使得以为顶点的三角形与相似?若存在,求出该直线的函数表达式及点的坐标;若不存在,请说明理由;yx11O(3)若点是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角与的大小(不必证明),并写出此时点的横坐标的取值范围08年28. 如图,在平面直角坐标系xOy中,OAB的顶点的坐标为(10,0),顶点B在第一象限内,且=3,sinOAB=.(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记QNM的面积为,QNR的面积,求的值. 09年28在平面直角坐标系xOy中,已知抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COSBCO。(1)求此抛物线的函数表达式; (2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 2010年5把抛物线向右平移1个单位,所得抛物线的函数表达式为(A) (B)(C) (D)28在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线(1)求直线及抛物线的函数表达式;(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;(3)设的半径为l,圆心在抛物线上运动,则在运动过程中是否存在与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由并探究:若设Q的半径为,圆心在抛物线上运动,则当取何值时,Q与两坐轴同时相切?2011年28如图,在平面直角坐标系中,ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上已知,ABC的面积,抛物线经过A、B、C三点。(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长; (3)在抛物线上是否存在异于B、C的点M,使MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由2012年28 如图,在平面直角坐标系xOy中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C以直线x=1为对称轴的抛物线 ( 为常数,且0)经过A,C两点,并与x轴的正半轴交于点B(1)求的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由; (3)若P是抛物线对称轴上使ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于 ,两点,试探究 是否为定值,并写出探究过程 201324. 在平面直角坐标系中,直线(为常数)与抛物线交于,两点,且点在轴左侧,点的坐标为,连接.有以下说法:;当时,的值随的增大而增大;当时,;面积的最小值为.其中正确的是_.(写出所有正确说法的序号)28. 在平面直角坐标系中,已知抛物线(为常数)的顶点为,等腰直角三角形的定点的坐标为,的坐标为,直角顶点在第四象限.(1)如图,若该抛物线过 ,两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点在直线上滑动,且与交于另一点.i)若点在直线下方,且为平移前(1)中的抛物线上的点,当以三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点的坐标;ii)取的中点,连接.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.2014 28. 如图,已知抛物线(为常数,且)与轴从左至右依次交于A,B两点,与轴交于点C,经过点B的直线与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求的值;来源:学|科|网(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?2015 9.将抛物线向左平移个单位长度,再向下平移个单位长度,得到的抛物线的函 数表达式为 A、 B、 C、 D、25.如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 .(写出所有正确说法的序号)方程是倍根方程;若是倍根方程,则;若点在反比例函数的图像上,则关于的方程是倍根方程;若方程是倍根方程,且相异两点,都在抛物线上,则方程的一个根为.28如图,在平面直角坐标系xOy中,抛物线yax 22ax3a(a0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:ykxb与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若ACE的面积的最大值为 ,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由xyOABDlC备用图xyOABDlCE20169二次函数y=2x23的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A抛物线开口向下B抛物线经过点(2,3)C抛物线的对称轴是直线x=1D抛物线与x轴有两个交点28(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)23与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由2017-10. 在平面直角坐标系 中,二次函数的图像如图所示,下列说法正确的是 ( )A B C. D28如图1,在平面直角坐标系中,抛物线与轴相交于两点,顶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国灭鼠产品和服务行业市场发展趋势与前景展望战略研究报告
- 应急救护知识竞赛试题及答案
- 离婚协议中股票财产分割与收益权归属明确协议
- 复杂离婚案件调解协议及子女抚养权争议起诉书模板
- 离婚协议书制作与婚姻法律文书审核服务合同
- 玄武区二手房买卖合同及配套社区文化活动参与权合同
- 环保科研实验室场地租赁与污染治理技术合同
- 城市离婚房产分割及补偿协议范本
- 物业服务企业员工劳动合同解除与经济补偿金计算合同
- 离婚协议书模板(涉及共同债务承担与子女抚养)
- (教科2024版)科学三年级上册2.1 水到哪里去了 课件(新教材)
- 2025国家能源集团招聘笔试历年参考题库附带答案详解
- 新课标(水平三)体育与健康《篮球》大单元教学计划及配套教案(18课时)
- 建筑工人临时用工协议书
- 室内电梯安装工程安全技术交底
- 小儿支气管肺炎课件
- DB32-T 3751-2020公共建筑能源审计标准-(高清现行)
- 销盘式摩擦磨损试验机设计
- 原创领袖的风采-易发久
- 2022年《上海市初中语文课程终结性评价指南》中规定的个文言实词
- 苏教版四年级上册科学全册课件
评论
0/150
提交评论