




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.4平面与平面垂直的性质,一、复习引入,1、平面与平面垂直的定义,2、平面与平面垂直的判定定理,一个平面过另一个平面的垂线,则这两个平面垂直。,符号表示:,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。,提出问题:,该命题正确吗?,二、探索研究,.观察实验,观察两垂直平面中,一个平面内的直线与另一个平面有哪些位置关系?,.概括结论,平面与平面垂直的性质定理,b,两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.,简述为:,面面垂直,线面垂直,该命题正确吗?,符号表示:,则ABE就是二面角-CD-的平面角。,E,证明:在平面内作BECD,垂足为B。,D,C,.知识应用,练习1:判断正误。,已知:平面平面,l,则,(2)垂直于交线l的直线必垂直于平面(),(3)过平面内任意一点作交线的垂线,则此垂线必垂直于平面(),(1)平面内的任意一条直线必垂直于平面(),P,C,A,平面平面,点P在平面内,过点P作平面的垂线PC,直线PC与平面具有什么位置关系?,思考,猜想:直线PC在平面内,B,已知:,=AB,P,PC.求证:PC。,P,C,A,B,D,过P做PDAB,垂足为D。PDAB,PD面。过一点只能做一条直线与平面垂直。PC与PD必重合,即PC在面内。,分析:在内作垂直于与交线的直线b。,又a,b(平面与平面垂直的性质定理),a,a/b(直线与平面垂直的性质定理),a/(直线与平面平行的判定定理),即直线a与平面平行。,如图:已知平面,,直线a满足a,a,判断直线a与平面的位置关系。,例1:,例2:如图,AB是O的直径,C是圆周上不同于A,B的任意一点,平面PAC平面ABC,,(2)判断平面PBC与平面PAC的位置关系。,(1)判断BC与平面PAC的位置关系,并证明。,例3:如图,已知PA平面ABC,平面PAB平面PBC,求证:BC平面PAB,E,解题反思,2、本题充分地体现了面面垂直与线面垂直之间的相互转化关系。,1、面面垂直的性质定理给我们提供了一种证明线面垂直的方法,面面垂直,线面垂直,性质定理,判定定理,1、平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。,2、证明线面垂直的两种方法:线线垂直线面垂直;面面垂直线面垂直,3、线线、线面、面面之间的关系的转化是解决空间图形问题的重要思想方法。,三、小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 推进教育类社会组织高质量发展研究
- 陶行知心育思想引领下中小学生健全人格养成路径研究
- 西南医科大学《中国现当代文学上》2023-2024学年第一学期期末试卷
- 贵阳学院《统计》2023-2024学年第一学期期末试卷
- 武汉工程大学《建筑设计理论(四)》2023-2024学年第一学期期末试卷
- 解码2025年健康消费市场新趋势报告-尼尔森iq-202506
- 云南文化艺术职业学院《土木工程概论A》2023-2024学年第一学期期末试卷
- 山西职业技术学院《运动解剖学Ⅰ》2023-2024学年第一学期期末试卷
- 施工安全生产教育
- 三峡大学科技学院《书法(二)》2023-2024学年第一学期期末试卷
- 《儿童食物过敏》课件
- 第四单元第1课+身临其境+课件-+【知识精研】人教版(2024)初中美术七年级上册
- 煤矿应急医疗救护常识课件
- 基于毫米波的工业 5G 创新应用白皮书
- DB37T 2640-2022 监狱安全防范系统建设技术规范
- 学校各功能室管理人员工作职责
- kpi绩效考核培训课件
- 2023-2024学年沪科版(2019)高中信息技术必修二第三单元项目五《规划并连接数字家庭系统的网络-组建小型信息系统网络(一)》说课稿
- RPA财务机器人开发与应用 课件 6.2 RPA银企对账机器人
- 2024年研究生考试考研植物生理学与生物化学(414)试题与参考答案
- 天津市南开区2023-2024学年六年级下学期期末数学试题
评论
0/150
提交评论