




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.2三角形全等的判定(二),三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。,在ABC和DEF中,ABCDEF(SSS),用符号语言表达为:,三角形全等判定方法1,三步走:,准备条件,摆齐条件,得结论,注重书写格式,2、已知:如图,AB=AC,DB=DC,请说明B=C成立的理由,1、已知:如图1,AC=FE、AD=FB,BC=DE求证:C=E,ACEF;DEBC,B,C,D,A,除了SSS外,还有其他情况吗?继续探索三角形全等的条件.,思考,(2)三条边,(1)三个角,(3)两边一角,(4)两角一边,当两个三角形满足六个条件中的三个时,有四种情况:,SSS,不能!,?,继续探讨三角形全等的条件:,两边一角,思考:已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?,图一,图二,在图一中,A,是AB和AC的夹角,,符合图一的条件,它可称为“两边夹角”。,符合图二的条件,通常说成“两边和其中一边的对角”,已知ABC,画一个ABC使AB=AB,AC=AC,A=A。,结论:两边及夹角对应相等的两个三角形全等,?,思考:ABC与ABC全等吗?如何验正?,画法:1.画DAE=A;,2.在射线AD上截取AB=AB,在射线AE上截取AC=AC;,3.连接BC.,A,C,B,A,E,D,C,B,思考:这两个三角形全等是满足哪三个条件?,探索边角边,三角形全等判定方法2,用符号语言表达为:,在ABC与DEF中,ABCDEF(SAS),两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”),F,E,D,C,B,A,1.在下列图中找出全等三角形,练习一,探索边边角,两边及其中一边的对角对应相等的两个三角形全等吗?,已知:AC=10cm,BC=8cm,A=45.,ABC的形状与大小是唯一确定的吗?,探索边边角,SSA不存在,显然:ABC与ABC不全等,A,B,D,A,B,C,SSA不能判定全等,两边及一角对应相等的两个三角形全等吗?,两边及夹角对应相等的两个三角形全等(SAS);,两边及其中一边的的对角对应相等的两个三角形不一定全等,现在你知道哪些三角形全等的判定方法?,SSS,SAS,例.如图,AC=BD,CAB=DBA,你能判断BC=AD吗?说明理由。,证明:在ABC与BAD中,AC=BDCAB=DBAAB=BA,ABCBAD(SAS),(已知),(已知),(公共边),BC=AD(全等三角形的对应边相等),因为全等三角形的对应角相等,对应边相等,所以,证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明两个三角形全等来解决。,归纳,C,在下列推理中填写需要补充的条件,使结论成立:(1)如图,在AOB和DOC中,AO=DO(已知)_=_()BO=CO(已知)AOBDOC(),AOB,DOC,对顶角相等,SAS,练习一,(2).如图,在AEC和ADB中,已知AE=AD,AC=AB,请说明AECADB的理由。,_=_(已知)A=A(公共角)_=_(已知)AECADB(),AE,AD,AC,AB,SAS,解:在AEC和ADB中,1.若AB=AC,则添加什么条件可得ABDACD?,ABDACD,AB=AC,BAD=CAD,S,A,S,练习二,AD=AD,BD=CD,S,2.如图,要证ACBADB,至少选用哪些条件可,A,B,C,D,ACBADB,S,A,S,证得ACBADB,AB=AB,CAB=DAB,AC=AD,S,BC=BD,3.如图:己知ADBC,AF=CE,AD=BC,E、都在直线上,试说明。,练习三,证明:ADBCAC(两直线平行,内错角相等)又AFCEAECF(等式性质)在AED和CFB中,ADBC(已知)AC(已证)AECF(已证)AEDCFB(SAS),AEDBFC;180AED180BFC;即DECAFB;DEBF.,知识应用,例2、如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长,就是A、B的距离.为什么?,分析:如果能证明ABCDEC,就可以得出AB=DE在ABC和DEC中,CA=CD,CB=CE.如果能得出ACB=DCE,ABC和DEC就全等了.,知识应用,例2、如图,有一池塘,要测池塘端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长,就是A、B的距离.为什么?,证明:在ABC和DEC中,ABCDEC(SAS)AB=DE(全等三角形的对应边相等),3.利用全等三角形证明线段或角相等,是证明线段或角相等的重要方法之一,其思路如下:观察要证的线段和角在哪两个可能全等三角形之中.分析要证全等的这两个三角形,已知什么条件,还缺什么条件.,课堂小结:,2.用尺规作图:已知两边及其夹角的三角形,1.三角形全等的条件,两边和它们的夹角对应相等的两个三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考专练:短文语境提示填空-(含答案)
- 江苏省徐州市2025年中考物理真题附真题答案
- 库房会计面试题库及答案
- 农业产业园项目可行性研究及2025年农业产业升级报告
- 地热能供暖2025年智慧城市能源系统应用现状与趋势报告
- 安全教育培训评估评语课件
- 金融科技企业估值方法在投资策略中的应用研究报告
- 农业产业化龙头企业在农业产业集聚中的发展模式与区域经济带动效应研究报告
- 特色农产品品牌与农产品期货市场互动关系研究报告
- 建筑公司工地施工安全执行方案
- GB/T 14715-2017信息技术设备用不间断电源通用规范
- 起重设备安装安全事故应急预案
- 教研组、备课组新学期教研组长会议课件讲义
- 生物质资源及其开发利用课件
- 物流网络规划与设计课件
- JB∕T 5245.4-2017 台式钻床 第4部分:技术条件
- 鞘膜积液的护理查房
- 《水工监测工》习题集最新测试题含答案
- 部编版三年级上册道德与法治第一单元第1课《学习伴我成长》课件
- 组合式塔吊基础施工专项方案(117页)
- 1、《国际贸易实务》课程标准解析
评论
0/150
提交评论