




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,同底数幂相乘,底数不变,指数,即同底数幂相除,底数不变,指数,即幂的乘方,底数不变,指数,即积的乘方,等于各因式幂的积,即:,(1)幂的概念:,(2)幂的运算法则:,相加,相减,相乘,思考:,在运算法则中,若去掉mn会怎样?,?,整数指数,规定:,将正整数指数幂推广到整数指数幂,m=n,m1,且nN*.,24=16(-2)4=16,16的4次方根是2.,(-2)5=-32,-32的5次方根是-2.,2是128的7次方根.,27=128,即如果一个数的n次方等于a(n1,且nN*),那么这个数叫做a的n次方根.,概念理解,【1】试根据n次方根的定义分别求出下列各数的n次方根.,(1)25的平方根是_;,(2)27的三次方根是_;,(3)-32的五次方根是_;,(4)16的四次方根是_;,(5)a6的三次方根是_;,(6)0的七次方根是_.,点评:求一个数a的n次方根就是求出哪个数的n次方等于a.,5,3,-2,2,0,a2,23=8(-2)3=-8(-2)5=-3227=128,8的3次方根是2.,-8的3次方根是-2.,-32的5次方根是-2.,128的7次方根是2.,奇次方根,1.正数的奇次方根是一个正数,2.负数的奇次方根是一个负数.,n次方根的性质,72=49(-7)2=4934=81(-3)4=81,49的2次方根是7,-7.,81的4次方根是3,-3.,偶次方根,2.负数的偶次方根没有意义,1.正数的偶次方根有两个且互为相反数,26=64(-2)6=64,64的6次方根是2,-2.,正数的奇次方根是正数.负数的奇次方根是负数.零的奇次方根是零.,n次方根的性质,(1)奇次方根有以下性质:,(2)偶次方根有以下性质:,正数的偶次方根有两个且是相反数,负数没有偶次方根,零的偶次方根是零.,根指数,根式,根式的概念,被开方数,由xn=a可知,x叫做a的n次方根.,9,-8,归纳总结1,当n是奇数时,对任意aR都有意义.它表示a在实数范围内唯一的一个n次方根.,当n是偶数时,只有当a0有意义,当a0,m,nN*,且n1),注意:底数a0这个条件不可少.若无此条件会引起混乱,例如,(-1)1/3和(-1)2/6应当具有同样的意义,但由分数指数幂的意义可得出不同的结果:=-1;=1.这就说明分数指数幂在底数小于0时无意义.,用语言叙述:正数的次幂(m,nN*,且n1)等于这个正数的m次幂的n次算术根.,分数指数,负分数指数幂的意义,回忆负整数指数幂的意义:an=(a0,nN*).,正数的负分数指数幂的意义和正数的负整数指数幂的意义相仿,就是:(a0,m,nN*,且n1).,规定:0的正分数指数幂等于0;0的负分数指数幂没有意义.,注意:负分数指数幂在有意义的情况下,总表示正数,而不是负数,负号只是出现在指数上.,有理指数幂的运算性质,我们规定了分数指数幂的意义以后,指数的概念就从整数指数推广到有理数指数.上述关于整数指数幂的运算性质,对于有理指数幂也同样适用,即对任意有理数r,s,均有下面的性质:,aras=ar+s(a0,r,sQ);(ar)s=ars(a0,r,sQ);(ab)r=arbr(a0,b0,rQ).,说明:若a0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.即当指数的范围扩大到实数集R后,幂的运算性质仍然是下述的3条.,练习,思考1:上面,我们将指数的取值范围由整数推广到了有理数,并且整数幂的运算性质对于有理指数幂都适用.那么,当指数是无理数时呢?,无理指数幂,例1.求值:,解:,数学运用,例2如果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 写字楼物业合同续签与商务会议服务协议
- 2025年5G时代网络安全态势与防护策略研究报告
- 2025年综合素质试卷题库及答案
- 2025年中国高帮滑板鞋行业市场全景分析及前景机遇研判报告
- 2025年工业污染场地修复技术发展现状与成本效益评估报告
- 2025-2030年新能源汽车轻量化材料研发与应用趋势报告
- 2025分家的合同范文
- 2025二手汽车吊车买卖合同模板
- 2025年度工程股份联营利润分配合同
- 2025年初一地理期末试卷及答案
- 林业行政执法培训课件
- 代办离职委托书模板文档
- 洗浴中心转让合同
- 2024年度新能源汽车充电设施三方入股合作协议书3篇
- 人工智能与虚拟现实技术的融合应用
- 大班绘本欣赏《妈妈摘的葡萄》
- GB/Z 37551.102-2024海洋能波浪能、潮流能及其他水流能转换装置第102部分:用已有运行测量数据评估波浪能转换装置在另一布放地点的发电性能
- 开发商购房合同范本
- DB43T 2464-2022 旱地烟田冬季绿肥还田技术规程
- 网络社会计算模型研究
- 机油化学品安全技术(MSDS)说明书
评论
0/150
提交评论