




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲分类讨论思想、转化与化归思想高考定位分类讨论思想,转化与化归思想近几年高考每年必考,一般体现在解析几何、函数与导数解答题中,难度较大1中学数学中可能引起分类讨论的因素(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列an的前n项和公式等(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等2常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题结论适合原问题(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径(8)类比法:运用类比推理,猜测问题的结论,易于确定(9)参数法:引进参数,使原问题转化为熟悉的形式进行解决(10)补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集UA获得原问题的解决,体现了正难则反的原则热点一分类讨论思想的应用 应用1由性质、定理、公式的限制引起的分类【例11】 (1)设数列an的前n项和为Sn,已知2Sn3n3,则数列an的通项an_(2)已知实数a0,函数f(x)若f(1a)f(1a),则a的值为_解析(1)由2Sn3n3得:当n1时,2S13132a1,解得a13;当n2时,anSnSn1(3n3)(3n13)3n1,由于n1时,a13不适合上式,数列an的通项公式为an(2)当a0时,1a1,这时f(1a)2(1a)a2a,f(1a)(1a)2a13a.由f(1a)f(1a)得2a13a,解得a,不合题意,舍去;当a1,1a1,这时f(1a)(1a)2a1a,f(1a)2(1a)a23a.由f(1a)f(1a)得1a23a,解得a.综上可知,a的值为.答案(1)(2)探究提高由性质、定理、公式的限制引起的分类整合法往往是因为有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致的情况下使用,如等比数列的前n项和公式、函数的单调性等应用2由数学运算要求引起的分类【例12】 (1)不等式|x|2x3|2的解集是()A(,)(1,)B(,1)C.1,)D(,1)(2)已知mR,则函数f(x)(43m)x22xm在区间0,1上的最大值为_解析(1)原不等式可转化为或或解得x或1x0或x0,故原不等式的解集为1,)(2)当43m0,即m时,函数y2x,它在0,1上是减函数,所以ymaxf(0).当43m0, 即m时,y是二次函数当43m0,即m时,二次函数y的图象开口向上,对称轴方程x0,它在0,1上的最大值只能在区间端点取得(由于此处不涉及最小值,故不需讨论区间与对称轴的关系)f(0)m,f(1)22m,当m22m,又m,即m时,ymaxm.当m22m,又m,即m时,ymax2(1m)当43m0,即m时,二次函数y的图象开口向下,又它的对称轴方程x0,所以函数y在0,1上是减函数,于是ymaxf(0)m.由、可知,这个函数的最大值为ymax答案(1)C(2)ymax探究提高由数学运算要求引起的分类整合法,常见的类型有除法运算中除数不为零,偶次方根的被开方数为非负,对数运算中真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数问题,含有绝对值的不等式求解,三角函数的定义域等,根据相应问题中的条件对相应的参数、关系式等加以分类分析,进而分类求解与综合应用3由参数变化引起的分类【例13】 已知函数f(x)ln xa(1x)(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a2时,求a的取值范围解(1)f(x)的定义域为(0,),f(x)a.若a0,则f(x)0,所以f(x)在(0,)上单调递增若a0,则当x时,f(x)0;当x时,f(x)0,所以f(x)在上单调递增,在上单调递减综上,知当a0时,f(x)在(0,)上单调递增;当a0时,f(x)在上单调递增,在上单调递减(2)由(1)知,当a0时,f(x)在(0,)上无最大值;当a0时,f(x)在x处取得最大值,最大值为fln aln aa1.因此f2a2等价于ln aa10.令g(a)ln aa1,则g(a)在(0,)上单调递增,g(1)0.于是,当0a1时,g(a)0;当a1时,g(a)0.因此,a的取值范围是(0,1)探究提高由参数的变化引起的分类整合法经常用于某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法热点二转化与化归思想应用1换元法【例21】 已知实数a,b,c满足abc0,a2b2c21,则a的最大值是_解析令bx,cy,则xya,x2y21a2.此时直线xya与圆x2y21a2有交点,则圆心到直线的距离d,解得a2,所以a的最大值为.答案探究提高换元法是一种变量代换,也是一种特殊的转化与化归方法,是用一种变数形式去取代另一种变数形式,是将生疏(或复杂)的式子(或数),用熟悉(或简单)的式子(或字母)进行替换;化生疏为熟悉、复杂为简单、抽象为具体,使运算或推理可以顺利进行应用2特殊与一般的转化【例22】 过抛物线yax2(a0)的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长度分别为p,q,则等于()A2a B. C4a D.解析抛物线yax2(a0)的标准方程为x2y(a0)焦点F,取过焦点F的直线垂直于y轴,则|PF|QF|,所以4a.答案C探究提高一般问题特殊化,使问题处理变得直接、简单特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果应用3常量与变量的转化【例23】 对任意的|m|2,函数f(x)mx22x1m恒为负,则x的取值范围为_解析对任意的|m|2,有mx22x1m0恒成立,即|m|2时,(x21)m2x10恒成立设g(m)(x21)m2x1,则原问题转化为g(m)0恒成立(m2,2)所以即解得x,即实数x的取值范围为.答案探究提高在处理多变元的数学问题时,我们可以选取其中的参数,将其看作是“主元”,而把其它变元看作是常量,从而达到减少变元简化运算的目的应用4正与反的相互转化【例24】 若对于任意t1,2,函数g(x)x3x22x在区间(t,3)上总不为单调函数,则实数m的取值范围是_解析g(x)3x2(m4)x2,若g(x)在区间(t,3)上总为单调函数,则g(x)0在(t,3)上恒成立,或g(x)0在(t,3)上恒成立由得3x2(m4)x20,即m43x在x(t,3)上恒成立,m43t恒成立,则m41,即m5;由得m43x在x(t,3)上恒成立,则m49,即m.函数g(x)在区间(t,3)上总不为单调函数的m的取值范围为m5.答案探究提高否定性命题,常要利用正反的相互转化,先从正面求解,再取正面答案的补集即可,一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”、“至少”及否定性命题情形的问题中.1分类讨论思想的本质是“化整为零,积零为整”用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机确定分类的标准逐类进行讨论归纳综合结论检验分类是否完备(即分类对象彼此交集为空集,并集为全集)做到“确定对象的全体,明确分类的标准,分类不重复、不遗漏”的分析讨论常见的分类讨论问题有:(1)集合:注意集合中空集讨论(2)函数:对数函数或指数函数中的底数a,一般应分a1和0a1的讨论;函数yax2bxc有时候分a0和a0的讨论;对称轴位置的讨论;判别式的讨论(3)数列:由Sn求an分n1和n1的讨论;等比数列中分公比q1和q1的讨论(4)三角函数:角的象限及函数值范围的讨论(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论(6)立体几何:点线面及图形位置关系的不确定性引起的讨论;(7)平面解析几何:直线点斜式中k分存在和不存在,直线截距式中分b0和b0的讨论;轨迹方程中含参数时曲线类型及形状的讨论(8)排列、组合、概率中的分类计数问题(9)去绝对值时的讨论及分段函数的讨论等2转化与化归思想遵循的原则:(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律(4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.一、选择题1等比数列an中,a37,前3项之和S321,则公比q的值是()A1 BC1或 D1或解析当公比q1时,a1a2a37,S33a121,符合要求当q1时,a1q27,21,解之得,q或q1(舍去)综上可知,q1或.答案C2过双曲线1(a0,b0)上任意一点P,引与实轴平行的直线,交两渐近线于R,Q两点,则的值为()Aa2 Bb2 C2ab Da2b2解析当直线PQ与x轴重合时,|a,故选A.答案A3函数f(x)2xx32在区间(0,1)内的零点个数是()A0 B1 C2 D3解析法一函数f(x)2xx32在区间(0,1)内的零点个数即函数y12x2与y2x3的图象在区间(0,1)内的交点个数作图(图略),可知在(0,)内最多有一个交点,故排除C,D项;当x0时,y11y20,当x1时,y10y21,因此在区间(0,1)内一定会有一个交点,所以A项错误选B.法二因为f(0)1021,f(1)21321,所以f(0)f(1)0.又函数f(x)在(0,1)内单调递增,所以f(x)在(0,1)内的零点个数是1.答案B4已知函数f(x)ln xx1,g(x)x22bx4,若对任意的x1(0,2),任意的x21,2,不等式f(x1)g(x2)恒成立,则实数b的取值范围是()A. B(1,)C. D.解析依题意,问题等价于f(x1)ming(x2)max.f(x)ln xx1(x0),所以f(x).由f(x)0,解得1x3,故函数f(x)的单调递增区间是(1,3),同理得f(x)的单调递减区间是(0,1)和(3,),故在区间(0,2)上,x1是函数f(x)的极小值点,这个极小值点是唯一的,所以f(x1)minf(1).函数g(x2)x2bx24,x21,2当b1时,g(x2)maxg(1)2b5;当1b2时,g(x2)maxg(b)b24;当b2时,g(x2)maxg(2)4b8.故问题等价于或或解第一个不等式组得b1,解第二个不等式组得1b,第三个不等式组无解综上所述,b的取值范围是.故选A.答案A二、填空题5若数列an的前n项和Sn3n1,则它的通项公式an_解析当n2时,anSnSn13n1(3n11)23n1;当n1时,a1S12,也满足式子an23n1,数列an的通项公式为an23n1.答案23n16在ABC中,点M,N满足2,若xy,则x_,y_解析不妨设ACAB,且AB4,AC3,以A为坐标原点,AB,AC所在直线分别为x轴、y轴建立平面直角坐标系,如图所示则A(0,0),B(4,0),C(0,3),M(0,2),N,那么,(4,0),(0,3),由xy,可得x(4,0)y(0,3),即(4x,3y),则有解得答案7设F1,F2为椭圆1的两个焦点,P为椭圆上一点已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|PF2|,则的值为_解析若PF2F190,则|PF1|2|PF2|2|F1F2|2.|PF1|PF2|6,|F1F2|2,解得|PF1|,|PF2|,.若F2PF190,则|F1F2|2|PF1|2|PF2|2|PF1|2(6|PF1|)2,解得|PF1|4,|PF2|2,2.综上所述,2或.答案2或8已知a为正常数,若不等式1对一切非负实数x恒成立,则a的最大值为_解析原不等式即1(x0),(*)令t,t1,则xt21,所以(*)式可化为1t对t1恒成立,所以1对t1恒成立,又a为正常数,所以a(t1)2min4,故a的最大值是4.答案4三、解答题9数列an中,a18,a42,且满足an22an1an0.(1)求数列的通项公式;(2)设Sn|a1|a2|an|,求Sn.解(1)an22an1an0,所以an2an1an1an,所以an1an为常数列,所以an是以a1为首项的等差数列设ana1(n1)d,则a4a13d,所以d2,所以an102n.(2)因为an102n,令an0,得n5.当n5时,an0;当n5时,an0;当n5时,an0.令Tna1a2an,则Tnn29n.所以当n5时,Sn|a1|a2|an|a1a2a5(a6a7an)T5(TnT5)2T5Tnn29n40,当n5时,Sn|a1|a2|an|a1a2anTn9nn2.所以Sn10已知函数g(x)(aR),f(x)ln(x1)g(x)(1)若函数g(x)过点(1,1),求函数f(x)的图象在x0处的切线方程;(2)判断函数f(x)的单调性解(1)因为函数g(x)过点(1,1),所以1,解得a2,所以f(x)ln(x1).由f(x),则f(0)3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨师技能考试试题及答案
- 莆田市中储粮2025秋招面试专业追问题库购销统计岗
- 淄博市中石油2025秋招笔试模拟题含答案机械与动力工程岗
- 国家能源景德镇市2025秋招机械工程类面试追问及参考回答
- 绵阳市中石化2025秋招笔试模拟题含答案法律与合规岗
- 中国广电海东市2025秋招网申填写模板含开放题范文
- 中国广电漯河市2025秋招网申填写模板含开放题范文
- 宜昌市中石化2025秋招写作申论万能模板直接套用
- 大唐电力丹东市2025秋招机械工程专业面试追问及参考回答
- 2025年美学设计考试题及答案
- 贷款中介签服务合同模板(3篇)
- 送教上门教师培训课件
- 急性宫外孕课件
- 贵阳市2026届高三年级摸底考试物理试卷(含答案)
- 美发编发基础知识培训课件
- 同期线损培训课件
- 工业相机原理 课件 第五章-工业相机的参数和工作模式
- 反诈知识竞赛试题及答案
- 浙教版2025-2026学年八年级上科学第1章 对环境的察觉 单元测试卷
- GB/T 44823-2024绿色矿山评价通则
- 《模锻件热处理》ppt课件
评论
0/150
提交评论