第五章__SPSS的相关分析ppt课件_第1页
第五章__SPSS的相关分析ppt课件_第2页
第五章__SPSS的相关分析ppt课件_第3页
第五章__SPSS的相关分析ppt课件_第4页
第五章__SPSS的相关分析ppt课件_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,第五章相关分析与检验,.,相关分析之一有关与无关,寻找变量间的关系是科学研究的首要目的。变量间的关系最简单的划分即:有关与无关。在统计学上,我们通常这样判断变量之间是否有关:如果一个变量的取值发生变化,另外一个变量的取值也相应发生变化,则这两个变量有关。如果一个变量的变化不引起另一个变量的变化则二者无关。,.,性别与四级英语考试通过率的相关统计,表述:统计结果显示,当性别取值不同时,通过率变量的取值并未发生变化,因此性别与考试通过率无关。自变量的不同取值在因变量上无差异,两变量无关。自变量的不同取值在因变量上有差异,两变量有关。,.,统计结果显示,当性别取值不同时,收入变量的取值发生了变化,因此性别与月收入有关。,.,变量关系的统计类型,.,相关分析之二关系强度,变量关系强度的含义:指两个变量相关程度的高低。统计学中是以准实验的思想来分析变量相关的。通常从以下的角度分析:A)两变量是否相互独立。B)两变量是否有共变趋势。C)一变量的变化多大程度上能由另一变量的变化来解释。,.,变量关系强度测量的主要指标,.,相关分析之三关系性质,直线相关与曲线相关正相关与负相关完全相关与完全不相关,.,一、列联相关,(一)列联分析的基本原理自变量发生变化,因变量取值是否也发生变化。比较边缘百分比和条件百分比的差别。,.,卡方测量用来考察两变量是否独立(无关)。其原理是根据这一概率定理:若两变量无关,则两变量中联合事件发生的概率应等于各自独立发生的概率乘积,.,在列联表中,这一定理就具体转化为:若两变量无关,则两变量中条件概率应等于各自边缘的概率乘积。反之,则两变量有关,或称两变量不独立。,.,由此可见,期望值(独立模型)与观察值的差距越大,说明两变量越不独立,也就越有相关。因此,卡方的表达式如下:卡方的取值在0之间。卡方值越大,关联性越强。在SPSS中,有PearsonX2和相似比卡方(LikelihoodRatioX2)两种。,.,的改进标准化系数:为使值有一固定的区间,便于比较,采用了以下几个修正:,A、系数(Phi):(01),适用于22表。B、列联系数(ContingencyCoefficient):(01),适用任意表。C、CramerV系数:(01),适用任意表。D、系数(Lambda):(01),适用任意表。E、Goodman&Kruskal-tau系数:(01),适用任意表。,.,(二)列联表分析的功能,调用列联表分析过程可进行定类与定序资料列联表分析,一个行变量和一个列变量可组成一个二维列联表,如再加一个控制变量则可组成一个三维列联表。而多个行、列、控制变量就可组成一个复杂的多维列联表。在分析中可对二维和多维列联表资料进行统计描述和x2检验,并计算相应的百分数指标。此外,还可计算四格表确切概率(FishersExactTest),且有单双侧(One-Tail、Two-Tail)、对数拟然比检验(LikelihoodRatio)以及线性关系的Mantel-Haenszelx2检验。,.,列联表的格式,.,(三)列联表分析过程,列联表分析步骤:按AnalyzeDescriptiveStatisticsCrosstabs顺序打开Crosstabs主对话框。,.,Crosstabs对话框,.,Statistics对话框,.,CellDisplay对话框,.,TableFormat对话框,决定各行的排列顺序:升序降序,.,(四)例1为了探讨吸烟与慢性支气管炎有无关系,调查了339人,情况如下:,吸烟和慢性支气管炎调查表,.,录入数据“Crosstab.sav”。变量h为频次;变量x为是否吸烟:1为吸烟,2为不吸烟;变量n为是否患病:1为患病,2为不患病。选择变量h进行加权。按Analyze-DescriptiveStatistics-Crootabs顺序打开Crootabs主对话框。将x变量选入Row框作为行变量,将n变量选入Column框作为列变量。打开Statistics对话框,选中Chi-squareContingencycoefficient和PhiandCramersV复选框,单击Continue返回。单击Cell按钮,打开Celldisplay对话框,选中observed和Expected复选框,单击Continue返回;单击OK。,1.操作步骤,.,统计摘要表,列出观测量有效值个数、缺失值个数和总的个数。,2.输出结果及分析,吸烟与患病统计摘要表,.,吸烟与患病列联表,.,卡方检验,.,对称性检验表,.,例2:以SPSS自带的数据文件”1991U.S.GeneralSocialSurvey.sav”为例分析影响幸福的因素。,.,.,.,.,.,.,.,.,.,.,.,二、相关分析(Correlate),.,(一)简介,相关分析用于描述两个变量间联系的密切程度,其特点是变量不分主次,被置于同等的地位。检验的假设为相关系数为0。可选择是单尾检验还是双尾检验。在Analyze的下拉菜单Correlate命令项中有三个相关分析功能子命令Bivariate过程、Partial过程、Distances过程,分别对应着相关分析、偏相关分析和相似性测度的三个spss过程。,.,(二)相关分析类型,Bivariate过程用于进行两个或多个变量间的相关分析,如为多个变量,给出两两相关的分析结果。Partial过程,当进行相关分析的两个变量的取值都受到其他变量的影响时,就可以利用偏相关分析对其他变量进行控制,输出控制其他变量影响后的相关系数。Distances过程用于对同一变量各观察单位间的数值或各个不同变量间进行相似性或不相似性分析,一般不单独使用,而作为因子分析等的预分析。,.,(三)Bivariate相关分析,在进行相关分析时,散点图是重要的工具,分析前应先做散点图,以初步确定两个变量间是否存在相关趋势,该趋势是否为直线趋势,以及数据中是否存在异常点。否则可能的出错误结论。Bivariate相关分析的步骤:输入数据后,依次单击AnalyzeCorrelateBivariate,打开BivariateCorrelations对话框,.,BivariateCorrelations对话框,.,Options对话框,对每一个变量输出均值、标准差和无缺省值的观测数。对每一个变量输出交叉距阵和协方差距阵。,计算某个统计量时,在这一对变量中排除有缺省值的观测值。对于任何分析,有缺省值的观测值都会被排除。,.,例1:以SPSS自带的数据文件”1991U.S.GeneralSocialSurvey.sav”为例分析自己教育、父亲教育、母亲教育、配偶教育与自己职业社会声望的关系。,.,.,.,.,.,.,例2:定序变量的Spearman分析实例为研究集团迫使个人顺从的效应,一些研究者用量表对12名大学生进行了调查,数据如下。,权威主义和地位欲评秩,.,1)输入数据,依次单击AnalyzeCorrelateBivariate,打开BivariateCorrelations对话框2)选择power和position变量进入Variables框中。3)在CorrelationCoefficients栏内选择Spearman。4)在TestofSignificance栏选择Two-tailed。5)选择Flagsignificantcorrelation。6)单击Options按钮,选择Meanandstandarddeviations、Cross-productdeviationsandcovariances、Excludecasespairise选项。7)单击OK。,分析步骤:,.,从表中可看出,权威主义和地位欲的相关系数为0.818,这表明权威主义越高的人地位欲也越高。权威主义与地位欲不相关的假设检验值为0.001,否定假设,即权威主义与地位欲是相关的。,结果分析:,.,例3:定序变量的Kendall分析实例,仍用前例中的数据(数据文件:权威(Spearman相关).sav)。操作过程相同,只是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论