


已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1实际应用问题中的基本概念和术语(1)仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫,目标视线在水平视线下方时叫(如下图),仰角,俯角,(2)方位角:一般指北方向线到目标方向线的水平角(3)方向角:以某一正方向(正南、正北、正东、正西)为角的始边,旋转到目标方向线的锐角(4)坡角:坡面与水平面的,顺时针旋转,夹角,2解斜三角形应用题应遵循以下步骤:(1)分析:准确理解题意,分清已知与所求,尤其要理解应用题中的有关名词术语,如坡度、仰角、俯角、视角、方向角、方位角等,必要时,画出示意图,化实际问题为数学问题;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;,(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.,3解斜三角形应用题常有以下几种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,再用正弦定理或余弦定理解之(2)实际问题经抽象概括后,已知量与未知量涉及两个三角形或多个三角形,这时需按顺序逐步在几个三角形中求出问题的解(3)实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理,4.运用正弦定理和余弦定理解决几何计算问题,要抓住条件和待求式子的特点,恰当地选择定理运用正弦定理一般是将边转化为角,而条件中给出三边关系时,往往考虑用余弦定理求角,1如下图,在河岸AC测量河的宽度BC,图中所标的数据a,b,c,是可供测量的数据下面给出的四组数据中,对测量河宽较适宜的是(),Ac和aBc和bCc和Db和答案:D,2从A处望B处的仰角为,从B处望A处的俯角为,则,之间的关系是()ABC90D180,解析:如下图,可知.答案:B,3有一长为1千米的斜坡,它的倾斜角为20,现要将倾斜角改为10,则斜坡长为_千米()A1B2sin10C2cos10Dcos20,解析:如下图,CBDAACB20,AACB10.ABBC1千米由余弦定理,知答案:C,4我舰在敌岛A南偏西50方向相距12海里的B处,发现敌舰正由岛A沿北偏西10的方向以10海里/时的速度航行,我舰要用2小时追上敌舰,则需要的速度大小为_答案:14海里/时,5一人在C处看到建筑物A在正北方向,另一建筑物B在西北方向,此人向北偏西75方向前进km到达D,看到A在他的东北方向,B在其北偏东75方向试求这两座建筑物AB间的距离,【例1】如图,港口B在港口O正东120海里处,小岛C在港口O北偏东60方向,港口B北偏西30方向上一艘科学考察船从港口O出发,沿北偏东30的OA方向以20海里/小时的速度驶离港口O,一艘快艇从港口B出发,以60海里/小时的速度驶向小岛C,在C岛装运补给物资后给考察船送去现两船同时出发,补给物资的装船时间为1小时,问快艇驶离港口B后,最少要经过多少小时才能和考察船相遇?,解:设快艇驶离港口B后,最少要经过x小时,在OA上的点D处与考察船相遇如右图,连结CD.则快艇沿线段BC,CD航行,在OBC中,BOC30,CBO60,BCO90.又BO120,BC60,OC60.故快艇从港口B到小岛C需要1小时在OCD中,COD30,OD20 x,CD60(x2)由余弦定理知,CD2OD2OC22ODOCcosCOD,,变式迁移1某观测站C在城A的南偏西20的方向(如右图),由城出发的一条公路,走向是南偏东40,在C处测得公路上B处有一人距C为31公里,正沿公路向A城走去,走了20公里后到达D处,此时CD间的距离为21公里,问这个人还要走多少公里才能到达A城?,【例2】(2009辽宁卷)如右图所示,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶测量船于水面A处测得B点和D点的仰角分别为75,30,于水面C处测得B点和D点的仰角均为60,AC0.1km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B、D的距离(计算结果精确到0.01km,1.414,2.449),思路分析:根据图中的已知条件求出一些点与点之间的距离,结合图形和计算出的距离作出判断,然后把B、D间距离的计算转化为找到的与B、D间距离相等的另外两点之间的距离解:在ACD中,DAC30,ADC60DAC30,所以CDAC0.1.又BCD180606060,故CB是CAD底边AD的中垂线,所以BDBA.,求解这类问题,实际上就是解三角形,三角形可解的前提是:(1)知道两个边和一个边的对角(用正弦定理),(2)知道一个边和两个内角(用正弦定理或余弦定理)在求解时要寻找这些三角形可解的条件,如本题中,如果直接求解B、D两点之间的距离,而没有探索出BC是AD的中垂线的话,在ABD中,就只能知道BAD和边AD的长,不具备三角形可解的条件,就不好直接求解了所以在用正弦定理、余弦定理解决测量问题时要学会寻找三角形可解的条件.,变式迁移2如下图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.现测得BCD,BDC,CDs,并在点C测得塔顶A的仰角为,求塔高AB.,【例3】如下图,在海岸A处发现北偏东45方向,距A处(1)海里的B处有一艘走私船在A处北偏西75方向,距A处2海里的C处的我方缉私船奉命以10海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,从B处向北偏东30方向逃窜问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间,缉私船应沿北偏东60的方向行驶,才能最快截获走私船,大约需要15分钟,应用解三角形的知识解决实际问题的基本步骤是:(1)根据题意,抽象或者构造出三角形;(2)确定实际问题所涉及的数据以及要求解的结论与所构造的三角形的边和角的对应关系;(3)选用正弦定理或余弦定理或者二者相结合求解;(4)给出结论.,变式迁移3沿一条小路前进,从A到B,方位角(从正北方向顺时针转到AB方向所成的角)是50,距离是3km,从B到C,方位角是110,距离是3km,从C到D,方位角是140,距离是(93)km.试画出示意图,并计算出从A到D的方位角和距离(结果保留根号),解:示意图,如右图所示,连接AC,在ABC中,ABC50(180110)120,又ABBC3,BACBCA30.由余弦定理可得,【例4】(2009宁夏、海南卷)为了测量两山顶M,N间的距离,飞机沿水平方向在A、B两点进行测量A,B,M,N在同一个铅垂平面内(如下图所示)飞机能够测量的数据有俯角和A,B间的距离请设计一个方案,包括:指出需要测量的数据(用字母表示,并在图中标出);用文字和公式写出计算M、N间的距离的步骤,解:方案一:需要测量的数据有:A点到M,N点的俯角1,1,B点到M,N的俯角2,2;A,B间的距离d(如右图所示),本题并没有直接给出测量数据让考生直接计算,而是要求考生亲临实际问题的环境里进行具体操作,找到解决问题的方案,并设计出计算步骤,可以说本题是一道真正意义上的应用题.,变式迁移4如右图,某小区准备绿化一块直径为BC的半圆形空地,ABC外的地方种草,ABC的内接正方形PQRS为一水池,其余地方种花若BCa.ABC,设ABC的面积为S1,正方形PQRS的面积为S2,将比值称为“规划合理度”(1)试用a,表示S1和S2.(2)当a为定值,变化时,求“规划合理度”取得最小值时的角的大小,1解三角形问题在实际生活中的应用数学知识来源于现实生活解三角形的知识在社会实践中有着广泛的应用常见题型有:测量距离问题、测量高度问题、测量角度问题、计算面积问题、航行问题、物理问题等,(1)测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度(2)测量高度问题:这类问题的情境属于“测量底(顶)部不能到达的物体的高度”测量过程中,要注意选取适当不同的测量点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版拆迁房屋买卖合同范本
- 2025年事业单位工勤技能-河北-河北地质勘查员五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河北-河北保健按摩师五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江西-江西政务服务办事员四级(中级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江西-江西保健按摩师一级(高级技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江苏-江苏无损探伤工五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西铸造工二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西有线广播电视机务员四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西垃圾清扫与处理工四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西下水道养护工四级(中级工)历年参考题库含答案解析
- 儿童之家实施可行性方案
- 建设法规(全套课件)
- 大学英语四级考试15选10专项训练及答案
- 2024-2029全球及中国康普茶行业市场发展分析及前景趋势与投资发展研究报告
- 心衰患者的容量管理中国专家共识-共识解读
- 新型冠状病毒肺炎病案分析报告
- 肱骨外科颈骨折(骨科)
- 药库改造方案
- 胸腹主动脉夹层的护理查房
- 高等教育新论要点整理
- 教师个人简历表格
评论
0/150
提交评论