




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.立体几何证明平行的方法及专题训练立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1) 通过“平移”。(2) 利用三角形中位线的性质。(3) 利用平行四边形的性质。(4) 利用对应线段成比例。(5) 利用面面平行的性质,等等。(第1题图)(1) 通过“平移”再利用平行四边形的性质1如图,四棱锥PABCD的底面是平行四边形,点E、F 分 别为棱AB、 PD的中点求证:AF平面PCE;分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形2、如图,已知直角梯形ABCD中,ABCD,ABBC,AB1,BC2,CD1,过A作AECD,垂足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC.()求证:BC面CDE; ()求证:FG面BCD;分析:取DB的中点H,连GH,HC则易证FGHC是平行四边形 3、已知直三棱柱ABCA1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, ACBE. 求证:()C1DBC; ()C1D平面B1FM. 分析:连EA,易证C1EAD是平行四边形,于是MF/EA4、如图所示, 四棱锥PABCD底面是直角梯形, CD=2AB, E为PC的中点, 证明: ;分析::取PD的中点F,连EF,AF则易证ABEF是平行四边形(2) 利用三角形中位线的性质ABCDEFGM5、如图,已知、分别是四面体的棱、的中点,求证:平面。分析:法一:连MD交GF于H,易证EH是AMD的中位线法二:证平面EGF平面ABC,从而平面6、如图,直三棱柱,AA=1,点M,N分别为和的中点。7如图,三棱柱ABCA1B1C1中, D为AC的中点. 求证:AB1/面BDC1; 分析:连B1C交BC1于点E,易证ED是B1AC的中位线8、如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.证明: BC1/平面A1CD;分析:此题与上面的是一样的,连结AC1与A1C交F,连结DF,则DF/BC19、如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:APGH. 利用平行四边形的性质10正方体ABCDA1B1C1D1中O为正方形ABCD的中心,求证: D1O/平面A1BC1;PEDCBA11、在四棱锥P-ABCD中,ABCD,AB=DC,.求证:AE平面PBC;12、在如图所示的几何体中,四边形ABCD为平行四边形,ACB=,平面,EF,.=.()若是线段的中点,求证:平面;()若=,求二面角-的大小利用对应线段成比例13、如图:S是平行四边形ABCD平面外一点,M、N分别 是SA、BD上的点,(1)=, 求证:MN平面SDC(2), 求证:MN平面SBC(6) 利用面面平行15、如图,三棱锥中, 为的中点,为的中点,点在上,且. 求证:平面;16、如图, 在直三棱柱中,,,点是的中点,(1)求证:;(2)求证:;(3)求三棱锥的体积。分析:取A1B1的中点E,连结C1E和AE,易证C1ECD,AEDB1,则平面AC1EDB1C,于是17在长方体中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 衍生题目三:科技行业新兴岗位的技能要求与发展趋势分析
- 知识题库-水泥磨巡检与操作员的考试题(附答案)
- 素描知识眼眉的结构画法
- 奶茶活动申请策划方案
- 数学家祖冲之的卓越贡献
- 细胞培养报告
- 信息技术美生活
- 三分钟讲解苏东坡
- 新生儿重症监护治疗体系构建与实施策略
- 脾虚齿痕舌诊疗案例分析
- 地理与生活密切相关
- 氧气吸入疗法及护理
- 2025年中国电信河南分公司招聘笔试参考题库含答案解析
- (DB45T 2149-2020)《公路边坡工程技术规范》
- 金笔作文四级第4课省公开课获奖课件市赛课比赛一等奖课件
- 牧场物语-矿石镇的伙伴们-完全攻略
- DB3305-T 227-2022“两山银行”建设与运行管理指南
- 食品经营安全管理制度目录
- 《不孕症》教案课件
- 【家庭教育对幼儿性格形成的影响探究11000字(论文)】
- 《电化学原理与应用》课程教学大纲
评论
0/150
提交评论