


免费预览已结束,剩余13页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正弦定理,正弦定理,两等式间有联系吗?,即正弦定理,定理对任意三角形均成立,正弦定理,正弦定理可以解什么类型的三角形问题?,已知两角和任意一边,可以求出其他两边和一角;已知两边和其中一边的对角,可以求出三角形的其他的边和角。,一般地,把三角形的三个角A,B,C和它的对边a,b,c叫做三角形的元素已知三角形的几个元素求其他元素的过程叫做解三角形,正弦定理,例题讲解,正弦定理,例题讲解,正弦定理,例题讲解,例3在中,求的面积S,由正弦定理得,正弦定理中的比值常数,典例1.在ABC中,A,B,C所对的三边分别为a,b,c,若a=2bsinA,求B。,(1)在中,一定成立的等式是(),(2)若A,B,C是ABC的三个内角,则sinA+sinB_sinC.,A.b/aB.a/bC.a/cD.c/a,c,B,正弦定理,练习:,(1)在中,一定成立的等式是(),C,(2)在中,若,则是()A等腰三角形B等腰直角三角形C直角三角形D等边三有形,D,正弦定理,练习:,(3)在任一中,求证:,证明:由于正弦定理:令,等式成立,=右边,在ABC中,若acosA=bcosB,求证:ABC是等腰三角形或直角三角形。,利用正弦定理证明“角平分线定理”,典例2已知a,b,c分别是ABC中角A,B,C的对边,已知(a2+b2)sin(A-B)=(a2-b2)sin(A+B)(AB),试判断ABC的形状。,典例3在ABC中,有试判断此三角形的形状。,典例4在ABC中,求证:,典例5在ABC中,如果且B为锐角,试判断此三角形的形状。,三角形面积计算公式,典例1在ABC中,a=3,b=5,cosC为方程10 x229x21=0的根,求ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瑞思课件谷歌链接
- 企业股份转让合同协议书股份转让合同协议书4篇
- 安全方面的培训证书课件
- 理财资金知识培训课件
- 甘南环保应急方案工程(3篇)
- 定西亮化工程方案(3篇)
- 安全文明校园培训内容课件
- 球磨安全操作培训课件
- 岑溪市明达建材有限公司建筑砌块制造项目环评报告
- 房屋渗水修补工程方案(3篇)
- 感恩教师节幼儿园教师节
- 小学科学新教科版三年级上册全册教案(2025秋新版)
- 病人出入院的护理课件
- 电缆安全小知识培训内容课件
- (2025年标准)员工住房安全协议书
- 青海省尖扎县2025年上半年公开招聘辅警试题含答案分析
- 苏教版2025-2026秋三年级数学上册教学计划及课时安排
- 2025浙江温州市公用事业发展集团有限公司面向高校招聘31人(第一批)笔试模拟试题及答案解析
- 色彩的三属性05课件
- 【里斯】年轻一代新能源汽车消费洞察与预测 -新物种 新理念 新趋势(2024-2025)
- 中铁施工管理办法
评论
0/150
提交评论