




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(三)函数与导数(1)1(2018江南十校模拟)设f(x)xln xax2(3a1)x.(1)若g(x)f(x)在1,2上单调,求a的取值范围;(2)已知f(x)在x1处取得极小值,求a的取值范围解(1)由f(x)ln x3ax3a,即g(x)ln x3ax3a,x(0,),g(x)3a,g(x)在1,2上单调递增,3a0对x1,2恒成立,即a对x1,2恒成立,得a;g(x)在1,2上单调递减,3a0对x1,2恒成立,即a对x1,2恒成立,得a,由可得a的取值范围为.(2)由(1)知,当a0时,f(x)在(0,)上单调递增,x(0,1)时,f(x)0,f(x)单调递增,f(x)在x1处取得极小值,符合题意;当0a1,又f(x)在上单调递增,x(0,1)时,f(x)0,f(x)在(0,1)上单调递减,在上单调递增,f(x)在x1处取得极小值,符合题意;当a时,1,f(x)在(0,1)上单调递增,在(1,)上单调递减,x(0,)时,f(x)0,f(x)单调递减,不合题意;当a时,00,f(x)单调递增,当x(1,)时,f(x)0,f(x)单调递减,f(x)在x1处取得极大值,不符合题意综上所述,可得a的取值范围为.2(2018河南省郑州外国语学校调研)已知函数f(x)aln xex.(1)讨论f(x)的极值点的个数;(2)若aN*,且f(x)0),当a0时,f(x)0时,令f(x)0得axex0,即xexa,又yxex在(0,)上是增函数,且当x时,xex,所以xexa在(0,)上存在一解,不妨设为x0,所以函数yf(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以函数yf(x)有一个极大值点,无极小值点综上,当a0时,无极值点;当a0时,函数yf(x)有一个极大值点,无极小值点(2)因为aN* 0,由(1)知,f(x)有极大值f(x0),且x0满足x0a,可知f(x)maxf(x0)aln x0,要使f(x)0恒成立,即f(x0)aln x00,由可得,代入得aln x00,即a0,所以ln x00,因为ln 1.70,且yln x0在(0,)上是增函数设m为yln x0的零点,则m(1.7,1.8),可知0x0m,由可得aln x0,当0x01时,aln x00,不等式显然恒成立;当1x00,a,令g(x),x(1,m),则g(x)0,所以g(x)在(1,m)上是减函数,且10.29,10.31,所以10.29g(m)0,m(x)单调递增;当x(e,)时,m(x)0,m(x)单调递减m(x)有极大值,又x(0,1时,m(x)0;当x(1,)时,0m(x)1时,h(x)f(x)g(x)0恒成立,即ln xex2ax2ae0恒成立,令t(x)ln xex2ax2ae,t(x)ex2a,设(x)ex2a,(x)ex,x1,exe,0,(x)在(1,)上单调递增,即t(x)在(1,)上单调递增,t(x)t(1)1e2a,当a且a1时,t(x)0,t(x)ln xex2ax2ae在(1,)上单调递增,t(x)t(1)0成立,当a时,t(1)1e2a0,存在x0(1,ln 2a),满足t(x0)0.t(x)在(1,)上单调递增,当x(1,x0)时,t(x)0,t(x)单调递减,t(x0)0不恒成立实数a的取值范围为(,1).4(2018福建省百校模拟)已知函数f(x)x1aex.(1)讨论f(x)的单调性;(2)设x1,x2是f(x)的两个零点,证明:x1x24.(1)解f(x)1aex,当a0时,f(x)0,则f(x)在R上单调递增当a0,得xln,则f(x)的单调递增区间为,令f(x)ln,则f(x)的单调递减区间为.(2)证明由f(x)0得a,设g(x),则g(x).由g(x)0,得x0,得x2.故g(x)ming(2)1时,g(x)0,当x0,不妨设x14等价于x24x1,4x12且g(x)在(2,)上单调递增,要证x1x24,只需证g(x2)g(4x1),g(x1)g(x2)a,只需证g(x1)g(4x1),即,即证(x13)x110;设h(x)e2x4(x3)x1,x(1,2),则h(x)e2x4(2x5)1,令m(x)h(x),则m(x)4e2x4(x2),x(1,2),m(x)h(2)0,h(x)在(1,2)上单调递增,h(x)h(2)0,x114得证5(2018长沙模拟)设函数f(x)xln(x)(1)探究函数f(x)的单调性;(2)当x0时,恒有f(x)ax3,试求a的取值范围;(3)令an6nln(nN*),试证明:a1a2an.(1)解函数f(x)的定义域为R.由f(x)10,知f(x)是R上的增函数(2)解令g(x)f(x)ax3xln(x)ax3,则g(x),令h(x)(13ax2)1,则h(x).()当a时,h(x)0,从而h(x)是0,)上的减函数,注意到h(0)0,则x0时,h(x)0,所以g(x)0,进而g(x)是0,)上的减函数,注意到g(0)0,则x0时,g(x)0,即f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询服务费收取方案范本
- 考研报考咨询宣传方案
- 2025版司法局《调查取证申请书》(空白模板)
- 线上读书活动策划方案公司
- 加油站营销送礼品方案
- 福鼎小型连续墙施工方案
- 围堤清障除杂施工方案
- 建筑转行展览活动方案设计
- 建筑模板废料清除方案设计
- 认知三板斧营销方案
- GB/T 7276-1987合页通用技术条件
- GB/T 40449-2021犬、猫绝育手术操作技术规范
- 档案收集与整理课件
- 安全工作目标及计划
- 消渴痹证(糖尿病周围神经病变)中医临床路径及诊疗方案
- 新浙美版五年级上册美术教学计划
- 《数码摄影入门与进阶》课件:第4章 摄影构图
- 聚氨酯防水涂料检测作业指导书
- 《幼儿园中班第一学期家长会》 PPT课件
- 公司组织架构图模板可编辑
- 电厂确保稳定运行技术措施
评论
0/150
提交评论