排列(3)解排列问题的常用技巧ppt课件_第1页
排列(3)解排列问题的常用技巧ppt课件_第2页
排列(3)解排列问题的常用技巧ppt课件_第3页
排列(3)解排列问题的常用技巧ppt课件_第4页
排列(3)解排列问题的常用技巧ppt课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章排列、组合和二项定理,2020年5月1日星期五,10.2排列,有条件限制的排列,解排列问题的常用技巧,解排列问题,首先必须认真审题,明确问题是否是排列问题,其次是抓住问题的本质特征,灵活运用基本原理和公式进行分析解答,同时,还要注意讲究一些基本策略和方法技巧,使一些看似复杂的问题迎刃而解。下面就不同的题型介绍几种常用的解题技巧。,(一)相邻问题捆绑法,对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”在一起,看作一个“大”的元(组),与其它元素排列,然后再对相邻的元素(组)内部进行排列。,例17人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法?,分析:先将甲,乙,丙三人捆绑在一起看作一个元素,与其余4人共有5个元素做全排列,有种排法,然后对甲,乙,丙三人进行全排列。,由分步计数原理可得:种不同排法。,(二)不相邻问题插空法,对于某几个元素不相邻的排列问题,可先将其它元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可。,例27人站成一排照相,要求甲,乙,丙三人不相邻,分别有多少种站法?,分析:可先让其余4人站好,共有种排法,再在这4人之间及两端的5个“空隙”中选三个位置让甲、乙、丙插入,则有种方法,这样共有种不同的排法。,(1)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法?,3三个男生,四个女生排成一排,男生之间、女生之间不相邻,有几种不同排法?,捆绑法:,插空法:,2如果有两个男生、四个女生排成一排,要求男生之间不相邻,有几种不同排法?,插空法:,练习12:,(三)特殊元素的“优先安排法”,对于特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其它元素。,例2用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有()A.24B.30C.40D.60,分析:由于该三位数是偶数,所以末尾数字必须是偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应优先安排。按0排在末尾和不排在末尾分为两类;,0排在末尾时,有个;0不排在末尾时,先用偶数排个位,再排百位,最后排十位有个;由分类计数原理,共有偶数30个.,B,(1)0,1,2,3,4,5这六个数字可组成多少个无重复数字的五位数?,(2)0,1,2,3,4,5可组成多少个无重复数字的五位奇数?,练习3,例6有4名男生,3名女生。3名女生高矮互不等,将7名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?,(四)顺序固定问题用“除法”,对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数.,所以共有种。,分析:先在7个位置上作全排列,有种排法。其中3个女生因要求“从矮到高”排,只有一种顺序故只对应一种排法,,(1)五人排队,甲在乙前面的排法有几种?,练习4,2三个男生,四个女生排成一排,其中甲、乙、丙三人的顺序不变,有几种不同排法?,分析:若不考虑限制条件,则有种排法,而甲,乙之间排法有种,故甲在乙前面的排法只有一种符合条件,故符合条件的排法有种.,(五)分排问题用“直排法”,把n个元素排成若干排的问题,若没有其他的特殊要求,可采用统一排成一排的方法来处理.,例7七人坐两排座位,第一排坐3人,第二排坐4人,则有多少种不同的坐法?,分析:7个人,可以在前后排随意就坐,再无其他限制条件,故两排可看作一排处理,所以不同的坐法有种.,(1)三个男生,四个女生排成两排,前排三人、后排四人,有几种不同排法?,或:七个人可以在前后两排随意就坐,再无其他条件,所以,两排可看作一排来处理不同的坐法有种,(2)八个人排成两排,有几种不同排法?,练习5,例3用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中1不在个位的数共有_种。,(六)否定问题总体淘汰法(剔除法或间接法),对于含有否定词语的问题,还可以从总体中把不符合要求的减去,此时应注意既不能多减又不能少减。,分析:五个数组成三位数的全排列有个,0排在首位的有个,1排在末尾的有,减掉这两种不合条件的排法数,再加回百位为0同时个位为1的排列数(为什么?)故共有种。,或,(1)三个男生,四个女生排成一排,甲不在最左,乙不在最右,有几种不同方法?,(2)五人从左到右站成一排,其中甲不站排头,乙不站第二个位置,那么不同的站法有()A.120B.96C.78D.72,直接,练习6,(3)0,1,2,3,4,5这六个数字可组成多少个无重复数字且个位数字不是4的五位数?,(4)用间接法解例1“6个同学和2个老师排成一排照相,2个老师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?”,(七)实验法(画树行图),题中附加条件增多,直接解决困难时,用实验逐步寻求规律有时也是行之有效的方法。,例8将数字1,2,3,4填入标号为1,2,3,4的四个方格内,每个方格填1个,则每个方格的标号与所填的数字均不相同的填法种数有(),A.6B.9C.11D.23,分析:此题考查排列的定义,由于附加条件较多,解法较为困难,可用实验法逐步解决。,第一方格内可填2或3或4。如填2,则第二方格中内可填1或3或4。,若第二方格内填1,则第三方格只能填4,第四方格应填3。,若第二方格内填3,则第三方格只能填4,第四方格应填1。,同理,若第二方格内填4,则第三方格只能填1,第四方格应填3。因而,第一格填2有3种方法。,不难得到,当第一格填3或4时也各有3种,所以共有9种。,(八)特征分析,研究有约束条件的排数问题,须要紧扣题目所提供的数字特征,结构特征,进行推理,分析求解。,例11由1,2,3,4,5,6六个数字可以组成多少个无重复且是6的倍数的五位数?,分析数字特征:6的倍数既是2的倍数又是3的倍数。其中3的倍数又满足“各个数位上的数字之和是3的倍数”的特征。把6分成4组,(1,2,3),(6),(1,5),(2,4),每组的数字和都是3的倍数。因此可分成两类讨论;,第一类:由1,2,4,5,6作数码;首先从2,4,6中任选一个作个位数字有,然后其余四个数在其他数位上全排列有,所以,第二类:由1,2,3,4,5作数码。依上法有,(1,2,3),(6),(1,5),(2,4),总的原则合理分类和准确分步,解排列(或)组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。,解法1分析:先安排甲,按照要求对其进行分类,分两类:,根据分步及分类计数原理,不同的站法共有,例16个同学和2个老师排成一排照相,2个老师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?,1)若甲在排尾上,则剩下的5人可自由安排,有种方法.,若甲在第2、3、6、7位,则排尾的排法有种,1位的排法有种,第2、3、6、7位的排法有种,根据分步计数原理,不同的站法有种。,再安排老师,有2种方法。,解法2见练习3(2),(1)0,1,2,3,4,5可组成多少个无重复数字的五位偶数?,个位数为零:,个位数为2或4:,所以,练习1,(2)0,1,2,3,4,5可组成多少个无重复数字且能被五整除的五位数?,分类:后两位数字为5或0:,个位数为0:,个位数为5:,(3)0,1,2,3,4,5可组成多少个无重复数字且大于31250的五位数?,分类:,(4)31250是由0,1,2,3,4,5组成的无重复数字的五位数中从小到大第几个数?,方法一:(排除法),方法二:(直接法),(1)三个男生,四个女生排成一排,甲不能在中间,也不在两头,有几种不同方法?,(2)三个男生,四个女生排成一排,甲只能在中间或两头,有几种不同排法?,找位置:,找位置:,练习7,例1:7名师生站成一排表演节目,其中老师1人,男生4人,女生2人,在下列情况下,各有多少种不同的方法?:两名女生必须相邻而站;:4名男生互不相邻;:若4名男生身高都不等,按从高到低一种顺序站;:老师不站中间,女生不站两端。,例2:七名同学站队,其中4名男生,3名女生。:若甲乙两位同学必须排在两端;:若甲乙不得排在两端;:若男生必须相邻;:若3名女生互不相邻;:若4名男生互不相邻;:若甲乙两名女生相邻且不与第三名女生相邻。,例3:用数字0、1、2、3、4、5组成无重复数字的数,依下列条件能组成多少个?:六位偶数;:六位奇数;:被3整除的五位数;:被5整除的六位数;:被6整除的五位数;:比102345大的自然数;:若把所有的六位数组成的六位数按从小到大的顺序排列,则321045是第几个数字?:求由1、2、3、4、5构成的所有五位数之和;,例1:5个人站成一排.(l)共有多少种不同的排法?(2)其中甲必须站在中间有多少种不同排法?(3)其中甲、乙两人必须相邻有多少种不同的排法?(4)其中甲、乙两人不相邻有多少种不同的排法?,解:(1)由于没有条件限制,5个人可作全排列,有,(2)由于甲的位置已确定,其余4人可任意排列,有,(3)因为甲、乙两人必须相邻,可视甲、乙在一起为一个元素与其他3人排列有,而甲、乙又有,根据分步计数原理共有,(捆绑法),(4)甲、乙两人外的其余3人先排有,要使甲、乙不相邻只有排在他们的空档位置,有,所以共有种排法,或用(1)(3)(间接法),(插空法),【演练反馈】1某一天的课程表要排入语文、数学、英语、物理、体育、音乐六节课,如果第一节不排体育,最后一节不排数学,一共有多少种不同的排法?,4名男生和3名女生站成一排,(2)甲、乙必须站在两端有多少种站法。,(1)一共有多少种站法,(3)甲、乙不能站在两端有多少种站法。,(4)甲不站排头和排尾有多少种站法。,(5)甲只能站排头或排尾有多少种站法。,(6)甲不站排头,乙不站排尾有多少种站法。,(7)4名男生站在一起,3名女生站在一起有多少种站法。,(8)男、女相间站有多少种站法,(9)女生不相邻有多少种站法,(10)3名女生顺序一定站有多少种站法,例题用数字0,l,2,3,4,5组成没有重复数字的数(l)能组成多少个六位数?(2)能组成多少个六位奇数?(3)能组成多少个能被5整除的六位数?(4)能组成多少个比240135大的数?,1由1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数(1)2,4,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论