已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IC反应器设计参数的说明1. 设计说明IC反应器,即内循环厌氧反应器,相似由2层UASB反应器串联而成。其由上下两个反应室组成。在处理高浓度有机废水时,其进水负荷可提高至3550kgCOD/(m3d)。与UASB反应器相比,在获得相同处理速率的条件下,IC反应器具有更高的进水容积负荷率和污泥负荷率,IC反应器的平均升流速度可达处理同类废水UASB反应器的20倍左右。(3) IC反应器的循环量进水在反应器中的总停留时间为tHRT 16h设第二反应室内液体升流速度为4m/h,则需要循环泵的循环量为256m3/h。第一反应室内液体升流速度一般为1020m/h,主要由厌氧反应产生的气流推动的液流循环所带动。第一反应室产生的沼气量为 Q沼气Q(C0Ce)0.80.353600/2(24.0743.611)0.80.3510313220626m3/d每立方米沼气上升时携带12m3左右的废水上升至反应器顶部,则回流废水量为1031320620 m3/d,即430859 m3/h,加上IC反应器废水循环泵循环量256 m3/h,则在第一反应室中总的上升水量达到了6861115 m3/h,上流速度可达10.7917.53m/h,可见IC反应器设计符合要求。研究快速启动厌氧反应器的技术一、外加物质效应1 投加无机絮凝剂或高聚物为了保证反应器内的最佳生长条件,必要时可改变废水的成分,其方法是向进水中投加养分、维生素和促进剂等。Macarie和Guyot研究发现,在处理生物难降解有机污染物亚甲基安息香酸废水时,向废水中投加FeSO4和生物易降解培养基后,可以有效地降低原系统的氧化还原能力,达到一个合适的亚甲基源水平,缩短的启动时间。Imai研究了向接种污泥中添加吸水性聚合物(WAP)的作用。WAP主要成分为丙烯酸颗粒树脂,具有可供微生物附着的高的比表面和复杂网状结构。而且密度低(湿密度1.0g/ml),与砂及其他物质相比提高了颗粒与微生物间的接触,明显强化了以葡萄糖或VFA为基质的实验室规模和中试规模UASB反应器的颗粒化过程。在颗粒污泥形成之后WAP被厌氧微生物慢慢降解,这造成颗粒分裂成多个小碎块,然后再次生长为成熟颗粒。逐渐地,所有颗粒被降解。根据试验提出用于强化颗粒化过程的反应器体积内WAP投加量为约750mg/L。王林山等人向厌氧接种污泥中投加膨润土(BT)和聚丙烯酰胺(PAM),采用常温间歇式进料,在一月内获得了颗粒污泥.膨润土的特征成分是蒙脱石。聚丙烯酰胺的酰胺基与蒙脱石生成氢键,起吸附和架桥作用,从而使膨润土、污泥和细菌聚集成直径510mm的絮凝团,成为颗粒污泥生长核心,絮凝团丝状菌网络内菌体继续生长,使其成为密实的,近似为球形的颗粒污泥。2投加细微颗粒物Lettinga等人研究表明粘土和其他无机颗粒似乎对颗粒污泥的形成有害。他们的实践表明:在无分散无机物质中能形成很好的颗粒污泥,颗粒挥发性固体含量很高。另一种观点认为:有助于悬浮污泥形成颗粒的因素之一是存在微生物能附着生长的晶核或生物载体。细胞附着在这些颗粒上是颗粒化的第一步。第二步是在惰性载体上形成致密和厚实的生物膜。所以,添加惰性载体的UASB反应器中污泥颗粒化过程可解释为生物膜形成现象。周律在反应器中投加了少量陶粒、颗粒活性炭等,启动时间明显缩短,这部分细颗粒物的体积约占反应器有效容积的2%3%。用石化厂含有机氯化物的废水进行对比实验表明,在其它条件相同时,投加粒径小于0.4的颗粒活性炭后,启动时间几乎缩短了一半。启动阶段投加的细颗粒物似乎仅起着初期颗粒污泥晶核的作用,这是利用颗粒物的表面性质,在短期内加快那些易于形成颗粒污泥的细菌在细颗粒物表面的富集。另外,初期投加细颗粒物后,系统的稳定性和最大有机负荷都有明显的提高。实验中还发现,以前启动反应器时要求严格的水力负荷和有机负荷控制,在投加细颗粒物后这些控制措施显得并不重要了。Huishoff Pol说明了惰性载体颗粒在颗粒化过程中的重要性。当从接种生活污水污泥中去除惰性颗粒(尺寸为40-100m),在不去除惰性颗粒的分散污泥颗粒化所需的时间内没有观察到颗粒化。同一学者观察到添加水-无烟煤颗粒(尺寸为0.25-0.42mm)显著减少中温条件下颗粒化所需时间。Yoda等报道当添加100m粉末沸石作为载体比无沸石时颗粒污泥形成得快。Fukuzaki等 发现添加聚亚安酯泡沫提高了甲烷菌群的停留。所以处理富含丙酸污水UASB反应器在短的启动时间获得高的甲烷发酵效率。但是,在高温颗粒化中在接种消化污泥中添加或不添加砂(50-10m)没有差别,尽管形成的颗粒包括砂颗粒这能归因于一些惰性颗粒相对于微生物比重较大,如砂粒。更多的微生物可能在反应器上部积累,而砂粒趋向于在反应器底部积累。所以有利于微生物附着生长的颗粒与微生物之间的接触机会显著减少,导致颗粒化过程不显著.Verrier等证明在厌氧消化池中添加细菌生长的载体能提高甲烷产量。Munoz等也表明载体如海泡石和辉绿岩在中试规模厌氧消化池中提高甲烷产量。Ross报道粉末活性炭的存在提高了处理玉米加工废水污泥的可沉降性。Morgan等和Yu等观察到活性炭能强化颗粒化过程,颗粒活性炭的添加提高了生物吸附从而刺激颗粒污泥的形成和其吸附污染物以固定状态降解的能力。Yu等研究了在UASB反应器启动期间粉末活性炭(PAC)和颗粒活性炭(GAC)对于污泥颗粒化的作用。结果表明PAC或GAC的添加能明显强化污泥颗粒化过程并加速工艺启动。污泥颗粒化定义为当10%颗粒大于2.0mm,在不添加惰性物质时约需95天,添加PAC和GAC反应器中分别减少25和35天。此外,通过试验PAC或GAC的添加使得微生物浓度更高,更早观察到肉眼可见颗粒,提高单位容积COD去除能力。而且,添加GAC对于UASB反应器启动的有益作用略高于PAC。通过添加PAC或GAC强化的颗粒化过程归因于丝状菌在活性炭表面更好的附着。但是,此研究未详细研究PAC或GAC的性质。PAC和GAC性质差异可能是添加PAC和GAC反应器间微小差异的原因。下表列出了添加不同惰性载体对污泥颗粒化的影响惰性材料接种污泥反应器介质尺寸(mm)基质颗粒化缩短时间(d)颗粒大小(mm)优势菌种泡沫塑料絮状污泥填充床(85和200ml)5.0丙酸-7.8-8.0甲烷丝菌沸石-上向流反应器(9.4和4.0l)0.1葡萄糖201.0-2.0甲烷丝菌水无烟煤非颗粒化厌氧消化污泥0.1VFA142.0甲烷丝菌WAPUASB1.3l0.1-0.2葡萄糖201.8-1.9杆状甲烷丝菌GACUASB10lVFA模拟颗粒污泥*2.1-2.3丝状甲烷丝菌10-GACUASB0.75l0.32蔗糖-0.4甲烷丝菌PACUASB7.3l0.4葡萄糖+蛋白胨+肉汤提取物352.0-4.0甲烷丝菌0.2302.0-4.0甲烷丝菌由此可见,惰性材料确实能加快UASB的启动。尽管这些载体仅为惰性材料,在基质降解中不起重要作用,但是也应非常仔细地挑选载体,并应具有以下性质:a比表面积高b比重接近厌氧污泥c好的憎水性d球形形状投加过量的惰性颗粒会在水力冲刷和沼气搅拌下相互撞击、摩擦,造成强烈的剪切作用,阻碍初成体的聚集和粘结,对于颗粒污泥的成长有害无益。另一方面,污水中高浓度絮凝性差的悬浮物质对于颗粒污泥的形成是有害的。并且高浓度分散惰性固体对于颗粒化过程也是不利的,因为在这些情况下,对于细菌用于生长的表面积太大,聚集生长受到限制。颗粒化完全取决于细菌生长,所以生长减慢导致颗粒化过程减缓。在高组分细小分散悬浮固体的污水中,细菌附着在分散颗粒上会导致活的细菌的流失。二、选择压理论该理论认为UASB反应器颗粒化过程的本质是反应器中存在污泥颗粒的连续选择过程。Hulshoff Pol等人的研究认为:在高选择压条件下,轻的和分散的污泥被洗出而较重的组分保持在反应器中。从而使细小分散的污泥生长最小化,细菌生长主要局限在有限数量由惰性有机和无机载体物质或种泥中存在的小的细菌聚集体组成的生长核心。这些生长核心的粒径增加直至达到颗粒污泥和生物膜部分产生脱落的特定最大尺寸,形成新生长核,如此反复。颗粒化初级阶段出现的丝状颗粒随着时间的增长变得更致密。低选择压条件下,主要是分散微生物的生长,这产生膨胀型污泥。当这些微生物不附着在固体支撑颗粒上生长时,形成沉降性能很差的松散丝状缠绕结构。而且,气泡附着在这些松散缠绕的丝状菌上时,污泥甚至有上浮的趋势。在生物反应器中,因气体流动或者液体流动和颗粒间碰撞引起的脱膜力是影响厌氧颗粒污泥的形成、生物结构及其稳定性的关键因素。在一个生物膜系统中,高的水力剪切力能够产生比较结实的生物膜,而剪切力比较弱的时候,生物膜容易成为一个异质多孔和比较脆弱的生物膜。另一方面,有证据表明,在好氧和厌氧颗粒污泥形成的过程中需要有一定的水力剪切力。当剪切力比较弱的时候,很少观察到污泥颗粒化现象。这些也表明了水力剪切力在生物附着和自固定化过程中的重要性。但是,水力剪切力对颗粒污泥的形成、结构和代谢机理的影响还不十分清楚。从上面的讨论显示,UASB反应器中的上升流速对污泥颗粒化过程具有显著的影响。因此,研究者在通过控制UASB反应器中的水力剪切力来加速污泥颗粒化进程的研究方面付出了许多努力。Alphenaar等人发现UASB反应器中高的液体上升流速和短的水力停留时间(HRT)两者结合有利于污泥颗粒化过程。Noyola和Moreno进行了一系列实验来研究UASB反应器中液体上升流速对厌氧颗粒污泥形成的影响。实验结果表明通过水剪切力作用使絮状厌氧污泥能够通过在非常短的时间里(不到8小时)而被转化为活性相对比较好的厌氧颗粒污泥。这些厌氧颗粒污泥的SVI和污泥沉淀速度显著改善,并且颗粒污泥的沉降性的增加将导致流失污泥从46%减少到2%。清华大学的实践表明将水力负荷提高到0.6m3/(m2h),可以冲走大部分的絮状污泥,使密度较大的颗粒状污泥积累在反应器的底部,形成颗粒污泥层,这部分污泥层可首先获得充足的营养而较快地增长。因此,通过提高UASB反应器中液体上升流速,将水剪切力作用于絮状厌氧污泥上,使得厌氧颗粒污泥的形成速度得到显著增强。但是,提高水力负荷不能过快,否则大量絮状污泥的过早淘汰会导致污泥负荷过高,影响反应器的稳定运行。探讨三相分离器在厌氧颗粒污泥膨胀床中的优化设计厌氧颗粒污泥膨胀床(EGSB)反应器是荷兰Lettinga教授和他同事在20世纪80年代后期对UASB反应器进行改良而开发的第三代反应器。因具结构简单、负荷高、适应性广等特点,受到国内外普遍重视,已被用于多种工业有机废水(如淀粉、啤酒、酒精、屠宰、味精、柠檬等)的处理14。自EGSB开发以来,因三相分离器是EGSB反应器稳定运行的关键,而且在日益发展的三相流态化技术中也有着广泛的应用前景,故反应器的设计重点集中在气一液一固三相分离器方面。但到目前为止,用于大规模生产的三相分离器结构在国外仍属专利,有关设计方法也是沿用UASB的设计方法。国内已有的报道对EGSB的三相分离器大多按固液和气液两相分离的方法进计设计5,主要是针对低浓度的有机废水,而对于高浓度的有机废水分高效果不太理想,出现污泥流失,限制了反应器负荷的提高。因此,在高浓度有机废水中EGSB反应器的三相分离器设计是一项值得探讨的课题。本文运用流体力学理论来对互相分离器进行理论分析和优化计算.以便对三相分离器的设计提供理论依据。1 三相分离器的基本要求及工作原理三相分离器是EGSB反应器的重要结构,它对污泥床的正常运行和获得良好的出水水质起着十分重要的作用。它同时具有以下两个功能:一是收集从分离器下反应室产生的沼气;二是使得在分离器之上的悬浮物沉淀下来。要实现这两个功能,在厌氧反应器内设置的三相分离器应满足以下条件:水和污泥的混合物在进入沉淀室之前,气泡必须得到分离。沉淀区的表面负荷应在3.0 m3(m2h)以下,混合液进入沉淀区前,通过入流孔道的流速不大于颗粒污泥的沉降速度。由于厌氧污泥具有凝结的性质,液流上升通过泥层时,应有利于在沉淀器中形成污泥层。沉淀区斜壁角度要适当,应使沉淀在斜底上的污泥不积聚,尽快滑回反应区内。应防止气室产生大量的泡沫;并控制气室的高度,防止浮渣堵塞出气管。现以图1所示三相分离器为例来说明其工作原理。气、液、固混合液上升到三相分离器内,沼气气泡碰到分离器下部的反射板时,折向气室而被有效地分离排出,与固、液分离。与气泡分离后的污泥在重力作用下一部分落回反应区,另一部分随流体沿一狭道上升,进入沉淀区。澄清液通过溢流堰排出,污泥在沉淀区絮凝、沉降和浓缩,然后沿斜壁下滑,通过污泥回流口返回反应区。由于沉淀区内液体无气泡,故污泥回流口以上的水柱密度大于反应器内液体密度,使浓缩后的污泥能够返回反应区,达到固液分离。2 三相分离器的设计一般来说,三相分离器的设计包括沉淀区设计、回流缝设计和气液分离设计。现对矩形结构反应器内的三相分离器设计进行阐述。2.1 沉淀区设计沉淀区的设计方法可参考普通二次沉淀池的设计6,主要考虑沉淀面积和水深。沉淀池的面积根据废水量和沉淀区的表面负荷确定,在处理高浓度的有机废水时,由于在沉淀区的厌氧污泥与水中残余的有机物还能产生生化反应,对固液分离有一定的干扰,但EGSB反应器中的颗粒污泥比UASB中的絮状污泥直径大,凝聚和沉降性能好,机械强度也较高,不易被水流冲碎而流失,因此,表面负荷UASB(小于1.0m3/(m2h)中的大,一般小于3.0m3/(m2h)。对于一个已知的反应器来说,沉淀区的面积是已知,故只须设汁沉淀区的水深。根据浅池沉降原理及工程实践,一般沉降区的体积是总体积的1520,这样不仅能收集部分沼气,而且能提高反应器的沉降效率。2.2 回流缝的设计由图2可知,三相分离器由上、下两组三角形集气罩所组成,根据几何关系可得:tg=h3/b1 (1)b2=b2b1 (2)v1=Q/S1 (3)S1=ab2(4)v2=Q/S2 (5)S2=2ca(6)其中为下三角形集气罩斜面的水平夹角,一般采用45600,为了利于回流,取600;h3为下三角形集气罩的垂直高度,m;b1为下三角形集气罩的12宽度,m;b2为两个下三角形集气罩之间的水平距离,即污泥的回流缝之一,m;b为单元三相分离器的宽度,m;Q为反应器进水流量,m3h;S1为下三角形集气罩回流缝的总面积,m2;S2为上三角形集气罩回流缝的总面积,m2;c为 C点到下三角形斜面的垂直距离,即CE,m;a为反应器宽度,即三相分流器的长度,m;v1下三角形集气罩之间的污泥回流缝中混合液的上升流速,m/h;v2为混合液通过上三角形集气罩与下三角集气罩之间回流缝的流速,mh;v0为废水的上升流速,mh。设=b2/b,则有01,为了使回流缝和沉淀区的水流稳定,确保良好的固液分离效果和污泥的顺利回流,通过理论计算和工程经验来优化值,使得v2v1。c可以通过调节h4来实现。最终确定流速池,以使回流缝的水流稳定,污泥能顺利地回流。一个性能优良的三相分离器应使沉淀区的浓缩污泥能够顺利回流至反应区,污泥在沉淀区的停留时间要短。因此分离器设计的关键是回流口的尺寸。回流口下方的污泥浓度ms越低,沉淀区浓缩污泥回流的推动力也越大。下三角形集气罩回流缝面积S1减小,进入三相分离器的气量减小,ms降低,但同时下三角形集气罩回流缝处的纵向流速增大,又使ms增加。ms与悬浮污泥层浓度、通过回流口的气量、液体流速及污泥沉降速度有关。ms可参照文献7计算悬浮层污泥浓度的公式并通过小试实验归纳为下式:md为悬浮层污泥浓度,KgSS/m3;gd为单位时间每平方米悬浮层顶部产气体积,m3;gd为单位时间每平方米反应器产气体积,m3;Ksg为单位有机物甲烷转化量,m3CH4/KgCOD;fme为气体中的甲烷含量;0为进水COD的质量浓度,KgCOD/m3;e为出水COD的质量浓度,KgCOD/m3;vsl为污泥的界面沉降速度,mh;Kls为污泥模型常数。集气罩最小断面的污泥浓度较高,而且被上升气体夹带到这一部分的污泥沉降性较差,污泥的沉降为拥挤沉降。污泥的界面沉降速度可用下列经验公式表示7: vslanmd (8)有机质的厌氧消化在具有固定床性质的污泥床和具有流化床性质的悬浮层两部分完成,三相分离器不参与有机质的消化过程。在一定的有机负荷下悬浮层浓度可根据Van Der Meer等人提出的上流式反应器厌氧消化过程的数学描述求得。这样三相分离器的设计首先要找出ms值最小时的,即可获得集气罩的最佳横向尺寸。2.3 气液分离设计由图2可知,欲达到气液分离的目的,上下三角形集气罩的斜边必须重叠,重叠的水平距离越大,气体分离效果越好,去除气泡的直径越小,对沉淀区同液分离效果的影响越小。由反应区上升的水流从下三角形集器罩回流缝过渡到上三角形集气罩回流缝再进入沉淀区,其水流状态比较复杂。当混合液上升到A点后,将沿着AB方向斜面流动,并设流速为Va,同时假定A点的气泡以速度Vb垂直上升,所以气泡的运动轨迹将沿着Va和Vb合成的方向运动,根据速度的平行四边形法则,有: Vb/Va=BC/AB (9)要使气泡分离后不进入沉淀区的必要条件是:Vb/VaBC/AB (10)气泡上升速度Vb与其直径、水温、液体和气体的密度、废水的粘度系数等因素有关。当气泡的直径很小(d0.1mm时、在气泡周围的水流呈层流状态,Re1,这时气泡的上升速度可用如下的斯托克斯公式计算:Vbd1g(LG)/18 (11)式中:L为废水的密度,Kg/m3;G为气泡的密度,Kg/m3。由图二可知,如果c已知,则 BCccos,由式(10),可求得AB,而上三角形集气罩的高满足如下的关系式:ABcos+b/2=h4ctg (12)从而可以求得h4。从式(12)可以看出,h4 是依据而变化的。b1已由前面确定,这样给定缝隙宽度C即可求出脱除直径为db的气泡所需最小h4。h4越大,上三角形集气罩的覆盖面就越宽,气体的分离效果就越好,去除的气泡也越小。但h4不能太大,否则上下两个三角形集气罩之间的截面面积减少,从而使得流经该截面的流速V2高于3m/h,使浓缩污泥回流困难。由于三相混合液在进入三相分离器前大部分气体已被排除,沉淀区下方污泥浓度较低,气量也少,此时浓缩污泥颗粒的沉降速度可用自由沉降速度来代替,并用下列公式来计算不同粒径的污泥沉降速度9: vp=(LG)gd2p/18u (Re2) (13)由vpv2 sin及vpv2,即可求出使浓缩污泥能够顺利回流的上部集气罩最小断面面积。从而求出上三角形集气罩的高度。考虑到颗粒形状不规则及仍有一定的干扰作用,实际沉降速度要比计算值低。另外,下部集气罩最小断面的污泥沉降速度应高于料液纵向流速,即vslv1。3 模型算法及其设计应用示例在一定的反应器负荷下,ms为的单目标函数,其优化模型为:目标函数msfgd(),v1() 求,使得ms最小。约束条件O1。由于目标函数的表达式复杂,自变量的取值范围不大,因此可以采用比较法来寻求,其可靠性和准确性通过的离散密集程度来保证。确定下三角形的回流缝宽度以后,就可以求得分离器的其它结构尺寸。计算步骤如下:确定0,e,v0;查Ksg,fme及有关参数;找出满足ms最小值的;由公式(1)(7)和(9)(13)求出b2和h4;校核。应用此方法对实验室小试中EGSB反应器的三相分离器进行了设计,用此三相分离器来分离混合液中的气体和污泥颗粒,取得了较满意的结果。进水的 COD质量浓度为 4 000 mgL,废水的上升流速为6 mh,在一定的水力停留时间下可获得80的稳定去除率,模型中有关参数由参照有关资料及菌种驯化实验所得如下:Ksg=0.35 m3CH4kgCOD;fme0.85;md10kgSSm3;vs131mh;Kts0.2; dp0.5 mm;ll103kgm3;pl.05kgm3;0.810-3NSm2;g10Nkg。将上述参数代入式(1)(13),可得到反应器及三相分离器的最佳结构尺寸,结果如下:反应器的边长b16cm;v06mh;=0.38; b26cm;b15cm;Cl.5Cm; BC3cm;AB3cm;h47.5 cm由上述尺寸确定的三相分离器可脱除直径为0.lmm以上的气泡,并能使直径为 0.5 mm的颗粒污泥顺利返回反应区。海南某淀粉厂黄浆废水EGSB处理工艺中三相分离器的设计采用此方法也获得了很好的效果。它是由三层多个三相分离器单元组成的箱式设备,具体的单元尺寸为: b100cm;b130Cm;b240cm;=0.4; h452cm;BC35cm;AB20cm4 结语本文运用流体力学理论,根据EGSB反应器中互相分离器的工作原理,在 Van Der Mer的数学模型基础上,建立了一个改进型三相分离器的数学模型,通过资料及实验得出一些参数后,进行了优化计算,得出了较为合理的回流缝尺寸和三角形集气罩的高度,为设计稳定高效的EGSB反应器提供理论依据。厌氧生物处理的运行与管理研究厌氧消化系统的启动主要是培养消化污泥,消化污泥培养正常的一个主要标志是产酸菌与甲烷菌数量上的动态平衡。产酸菌繁殖速度快,对环境条件要求较低,极易大量培养繁殖,而甲烷菌很脆弱,对环境条件要求高,初期培养较困难,因此,试运行中生物培养的主要目标是甲烷菌的培养。一般来说,甲烷菌培养良好时,产酸菌必然良好,但产酸菌的过度繁殖,不利于甲烷菌的培养,有时甚至不可能培养起来。向消化池内投入消化种污泥,种污泥可以取自其他处理厂,如无条件,可从废坑塘种取部分腐烂的污物或污泥投入消化池作为种污泥。向消化池内逐步投入生污泥,使消化污泥自行逐渐形成。此法培养时间较长,一般需23个月才能将消化污泥培养正常。在培养消化污泥时,必须控制有机物的投配负荷,投配负荷太高,会导致挥发性脂肪酸的大量积累,使酸衰退阶段时间太长,从而大大延长培养时间。一般有两种控制方法:一是降低投泥的浓度;二是用初沉出水或二沉出水注满消化池,稀释投入的污泥。1、厌氧滤池的启动厌氧滤池的启动即完成反应器内污泥的增殖与驯化,通过形成生物膜和细胞聚集体使污泥达到预定的浓度和活性,从而使反应器可在设计负荷下正常运行。通常可采用已有的污水处理厂的消化污泥作为接种污泥,污泥在投加前可与部分原水混合,在反应器仲停留35d,然后开始连续进水。开始时,COD负荷应低于1.0kg/(m3d)。对于高浓度的废水要进行适当的稀释,并在启动过程中逐渐减少稀释倍数,增加负荷。当废水中可生物降解的COD去除率达到80左右时,即可按设计负荷连续运行了。2、UASB系统的启动对于一个新建的上流式厌氧污泥床(UASB)系统来说,启动过程主要是用未经驯化的絮状污泥(如污水处理厂的消化污泥)对其进行接种,使反应器达到设计负荷并实现有机物的去除效果,通常这一过程伴随着颗粒化的完成,因此也称为污泥的颗粒化。由于厌氧微生物,特别是甲烷菌增殖很慢,厌氧反应器的启动需要很长时间。但是,一旦启动完成,在停止运行后的再次启动可以迅速完成。当没有现成的厌氧污泥和颗粒污泥时,采用最多的是城市污水厂的消化污泥。除了消化污泥之外,可用作接种的污泥和沉淀物或富微生物的河泥也可以培养出颗粒污泥。污泥VSS的接种浓度至少不低于10kg/m3反应器容积。接种污泥的填充量应不超过反应器容积的60。当用非颗粒污泥接种时,为了培养颗粒污泥或沉降性能好的污泥,都存在一个将絮状污泥和分散的细小污泥由反应器“洗出”的阶段,这是反应器完成颗粒化的先决条件。这一阶段是一个缓慢和微生物逐步进化的过程,控制的关键要素之一是水力停留时间或上升流速。一般升流速度未0.41.0m/h,如果有必要可以采用出水的回流。但是出水冲走的污泥绝对没有必要回流到反应器。从负荷角度考虑UASB的初次启动和颗粒化过程分为3个阶段。阶段1,即启动的初始阶段,这一阶段是低COD负荷的阶段2kg/(m3.d)阶段2 即当反应器COD负荷上升至25kg/(m3.d)的启动阶段。在这阶段在反应器里对较重的污泥颗粒和分散的、絮状的污泥进行选择。使这一阶段的末期留下的污泥中开始产生颗粒污泥和保留沉淀性能良好的污泥。所以COD负荷在5kg/m3.d左右是反应器中以颗粒污泥或絮状污泥为主的一个重要的分界。阶段3 这一阶段是指反应器COD负荷超过5kg/m3.d,此时,絮状污泥变得迅速减少,而颗粒污泥加速形成直到反应器内不再有絮状污泥存在。当反应器COD负荷大于5kg/m3.d,由于颗粒污泥的不断形成反应器大部分被颗粒污泥充满时,其最大COD负荷可以超过20kg/m3.d,当反应器运行COD负荷小于5kg/m3.d时,系统中虽然可能形成颗粒污泥,但是反应器的污泥性质是由占主导地位的絮状污泥所确定。厌氧生物处理新工艺之厌氧序批式反应器的探讨前言在高效的废水处理工艺方面,各国学者相继开发了各种高效厌氧生物反应器,如厌氧生物滤池(AF)上流式厌氧污泥床(UASB)和厌氧流化床(AFB)等。美国教授Dague等人把好氧生物处理的序批式反应器(SBR)运用于厌氧处理,开发了厌氧序批式反应器(Anaerobic Sequencing Batch Reactor),简称为ASBR。Dague等人发现在ASBR中可以形成颗粒污泥,污泥沉降快且易于保留在反应器内,具有高SRT,低HRT。虽然ASBR运行上类似于厌氧接触法,但ASBR的固液分离在反应器内部进行,不需另设澄清池,不需真空脱气设备。出水时反应器内部生物气的分压使沉淀污泥不易上浮,沉降性能良好。另外,ASBR中不需UASB中的复杂的三相分离器。ASBR具有工艺简单、运行方式灵活、生化反应推动力大并耐冲击负荷等优点。本文将介绍ASBR的特点,运行条件及ASBR运行中各阶段所需时间的确定。1 形成颗粒污泥是ASBR的基本特征颗粒污泥中厌氧微生物邻近程度远小于絮状体污泥。厌氧消化成功的关键在于反应器中保持多种微生物之间的平衡,特别是能够保持低氢分压。从热力学上考虑,产乙酸菌把长链挥发酸转化为乙酸的反应只有在氢分压-5低于101.32510kPa情况下才能发生,这说明利用CO2和H2的产甲烷菌对产乙酸菌关系重大。厌氧颗粒污泥中不同菌种之间邻近的共生关系有利于厌氧消化过程的顺利进行,中间产物及H2及时被不同菌种消耗掉可以使反应继续进行,这是颗粒污泥在机理上的优势。絮状体污泥尽管也发生H2及中间产物的转化,但颗粒污泥中的微生物固定在颗粒上,使中间产物所需传送的距离远远要近于离散的絮状污泥。Mecart和Smith1发现颗粒污泥与分散的絮状体污泥相比较,前者的氢分压低对。利用速率快,Thide等人对比研究了颗粒污泥与悬浮污泥运行的情况,结果发现以乙醇为基质时,颗粒污泥较悬浮污泥的基质转化率高75,以甲酸为基质时,在颗粒污泥中基质转化速率为0.275min。这充分证明颗粒污泥中厌氧微生物邻近度近于絮状体污泥,可以提高污泥活性。由于在ASBR中形成了颗粒污泥,使处理效果好,运行稳定,能够处理高浓度有机废水。在接种成熟的颗粒污泥时,ASBR启动所需时间可以大大缩短,这就克服了普通厌氧法启动慢的缺点。2 ASBR能在常温下处理低浓度废水大多数高效厌氧反应器主要为中温消化。ASBR能够在常温时处理废水,温度低时基质去除率低,但ASBR出水中微生物流失量少,使反应器内可保持高的生物量,这可以抵消由于低温造成的基质去除率低的影响。低浓度有机废水在总污水排放量中占很大的比重,甲烷化能力低,采用常规的厌氧消化处理技术难于奏效,好氧生物处理成本昂贵,ASBR能有效地处理低浓度有机废水。Ndon和Dague31997年研究了ASBR处理CODCr为1000、800、600和400mgL的人工合成废水,当温度为3515、HRT为48h和24h时,各种进水浓度CODcr去除率超过了90,在15低温下进水CODcr为600和400mgL时,ASBR对CODcr的去除率仍然超过了85。3 影响ASBR运行的因素3.1 进水时间(tf)与反应时间(tr)之比ASBR艺过程是一个非稳定过程,反应器中有机物浓度是时间的函数。进水结束时达最高值,这说明充水时间影响着ASBR的工艺的处理效果。ASBR工艺运行分为进水、反应、沉淀和排水4个阶段。沉淀和排水时间在同一反应中一般固定且时间短,而进水时间与反应时间是工艺运行的主要参数,其比值影响 ASBR艺的处理效率。过去曾有人认为快速进水可使相应的反应时间加长,且可提高反应速率。但是当基质浓度超过半饱和常数时,反应速率成零级反应,且在ASBR中不能以CODcr去除率作为唯一指标。快速进水由于产酸菌产生挥发性脂肪酸(VFA)速率高于产甲烷菌消耗有机酸的速率,使反应器中大量积累VFA,当负荷大于某一值时,甲烷化能力急剧下降。进水时间长,尽管反应速度慢,但中间产物VFA的及时消耗有利于ASBR顺利进行。在低负荷时tftr值对反应影响较小,高负荷情况下tftr造成的影响大。处理有毒有害废水时应适当控制tf/tr值。3.2 碱度ASBR运行时要求混合液具有一定的pH缓冲能力,启动初期颗粒污泥没有形成时,对pH值极为敏感,一旦pH值低于7.0产气不活跃。把pH值调为7.07.5时,产气明显增加,说明进水碱度对形成的颗粒污泥作用很关键,特别在低温时,混合液粘滞性大,使生物气泡附着于污泥上不容易释放,当附着的生物气泡越集越多时,容易造成污泥上浮使污泥大量流失。出现这种情况时不应增加污泥负荷,而应加人适当碱度使生物气泡释放出来,使沉降性能变好。操作稳定时,适于增大负荷,此时颗粒污泥生长加快,当颗粒污泥形成并稳定一段时间后,操作适当时不易解体。此时碱度可比启动阶段有所降低,但要保持足够的碱度,处理以碳水化合物为主的废水时,进水碱度与CODcr之比应大于3。3.3 温度ASBR能在 565范围内处理多种废水,为在低温和常温下廉价处理废水提供了可能性。但恒温对ASBR保持系统的稳定性有重要作用,不同种群产甲烷菌对生长的温度范围均有严格要求,从而需要保持恒温。不论何种原因导致温度的短期突变,均会对厌氧发酵过程产生明显的影响,高温发酵时最为敏感。4 ASBR各阶段所需时间的确定ASBR运行时每周期包括4个阶段,依次为进水、反应、沉淀和排水阶段。各个阶段的停留时间由操作条件和所需出水水质来决定。一个周期所需最短时间tmin是进水时间扒反应时间tr、沉淀时间ts和出水时间td的和,即tmin=tf+tr+ts+td (1)4.1 进水时间 进水时间由进水体积和进水速度决定,同时须考虑有毒有害物质的抑制影响进水速度视进水水质而定。进水体积由设计的HRT有机负荷及预定的沉淀特征确定。进水时间由下式求出:tf=VfQf(2)式中:Vf进水体积,L; Qf-进水速度,L/h。4.2 反应时间反应所需时间由废水水质和浓度、污染物的降解速率、所需出水水质、生物固体浓度和水温等因素决定。反应器中混合液体积从进水开始不断增加,直到进水结束达最大值门预定反应器总有效体积人进水时反应器中基质浓度不断增加,而反应阶段反应器中基质浓度不断减少,这表明ASBR是间歇进行的非稳态厌氧生物处理过程人SBR反应器在时间上为推流式反应器,在空间上为完全混合式反应器。从另一个角度出发,可以认为进水阶段为完全混合反应,反应阶段为推流式反应。采用莫诺德动力学方程来描述反应器中基质浓度的变化情况时,基质去除率是按一级反应进行的:dS/dt=-KXS/Ks+S (3)式中:S-基质浓度,mgL;X-污泥浓度,mg/L;K-最大比基质利用速率,l/d;Ks-半饱和常数,mgL。由于在厌氧反应器ASBR中污泥产率很低,同时反应器中保持有高污泥浓度,从而可以认为在进水阶段和反应阶段污泥量的变化可忽略不计,进水阶段完全混合时的物料平衡为下式:dS/dt=Q/(Vmin+Vf)(S0-S)-KXS/Ks+S (4)式中:Vf为某时打共进水体积,为时间的函数。联合(4)式和(5)式可得出进水结束时的基质浓度,通常采用迭代法可解出,开始进水时间为t时的基质浓度由下式给出:S=(反应器中基质量)t/(反应器中混合液总体积)t (6)在时间为t+t时基质浓度为:式中:St-时间为t时的基质浓度,mgL;Vt-时间为t时的反应器中总体积,L;t-计算时取得时间间隔;Vmin-进水开始时反应器中混合液体积,L。在t足够小时,t+t时的基质浓度可认为与时间为t时基质浓度几乎相等把St代人(7)式可预测在进水结束时的基质浓度Sf,结合式(3)可取出反应所需时间如下:tr=Ks/KXln(Sf/Se+(Sf-Se)/Ks (8)式中:Se-设计的出水基质浓度,mgL。4.3 沉淀时间沉淀阶段停止搅拌,为理想的静止沉淀。沉淀所需时间是污泥沉淀速度出所需排水体积Vd及反应器横截面积(A)的函数,即ts=Vd/vA (9)但沉淀时间不宜过长,通常为1030min。沉淀时间过长时继续产出的生物气使已沉降的污泥重新悬浮起来。混合液悬浮固体浓度MLSS,进料量与污泥量之比(FM)是影响污泥沉淀速率及出水浓度的重要因素。4.4 节水时间排水所需时间由所排放水的体积及出水流量Qd决定,通常为了保持反应器中混合液恒定体积,排水体积等于该周期进水体积,排水时间可由下式得出:td=Vd/Qd (10)5 结语ASBR同其它厌氧反应器比较有如下特点:ASBR能形成颗粒污泥,同UASB和AF相比,在反应器底部不需要复杂且昂贵的配水系统,也不需要复杂的三组分离器。ASBR在动力学上有显著的优越性,FM值高低交替变化,既保证了反应阶段的高去除率,又保证了沉淀阶段的良好沉淀效果。ASBR能够在较大的温度范围内(565)运行,可在低温和常温下处理各种高浓度、低浓度和特种有机废水。 反应器的启动及颗粒污泥的培养 由于目前已经建了许多生产性 UASB 装置,所以可采用 UASB 反应器的颗粒污泥作为 IC 反应器启动时的接种污泥。当采用 UASB 反应器的颗粒污泥作为 IC 反应器的种泥时,UASB 反应器颗粒污泥演变为 IC 反应器的颗粒污泥,一般要经过一至两个月才能完成启动过程。Peredoom 和 Vereijken 将代码为 IND 的处理造纸废水 UASB 反应器的颗粒接种到代码为 ICP 的处理啤酒废水的 IC 反应器中,并测定了不同运行期 IC 反应器污泥颗粒的分布,测定的结果见图 17-5。由图 17-5 可知,IC 反应器用 UASB 反应器颗粒污泥接种后,由于 IC 反应器的剪切力较大,接种的大颗粒被剪切成小颗粒,所以小颗粒数量增加,反应器生物量并没有随时间减少,在第 2 周进行泥样分析,开始显示出颗粒大小分布较宽的 IC 颗粒分布特征。由于IC 反应器的污泥负荷率和容积负荷率高,污泥的生长速率很快,颗粒的培养在接种后 2个月即可完成。如果没有颗粒污泥接种而采用絮体污泥接种,则启动初期只能采用低负荷运行,待自行培养出颗粒污泥后,再逐步提高负荷,这样启动时间会大大延长。目前荷兰 PaquesBV 公司的 IC 反应器均采用 UASB 反应器的颗粒污泥接种。作者认为,如果采用处理相同废水的 IC 反应器污泥接种则更为理想,可缩短启动时间。室IC反应器室在高负荷下运行,其COD去除率为60%70%。反应器的初始容积负荷为31.25kgCOD/(m3d),COD去除率为62.3%。第29天容积负荷升至50.8kgCOD/(m3d),COD去除率为59.8%。在第55天反应器进水COD浓度为4500mg/L,污泥负荷为3.99gCOD/(gVSSd),COD去除率为61%。第89天容积负荷和污泥负荷分别为76.83kgCOD/(m3d)、3.97gCOD/(gVSSd),COD去除率为64.3%。室与室相比,室的运行负荷相对较低,以室进水COD浓度计算则室的COD去除率为60%85%,去除的COD占反应器进水COD的20%30%。室的初始负荷为10.9kgCOD/(m3d),COD去除率为61.0%
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 芳香烃生产工操作规程考核试卷含答案
- 光敏电阻器制造工安全文明评优考核试卷含答案
- 社群健康助理员安全演练考核试卷含答案
- 碳九石油树脂装置操作工风险评估与管理模拟考核试卷含答案
- 2024年孝感市特岗教师招聘笔试真题汇编附答案
- 裂解汽油加氢装置操作工班组建设水平考核试卷含答案
- 2024年承德医学院辅导员考试参考题库附答案
- 电视调频天线工岗前安全生产意识考核试卷含答案
- 低速载货汽车司机6S执行考核试卷含答案
- 2024年沧州航空职业学院辅导员招聘备考题库附答案
- 汉源县审计局关于公开招聘编外专业技术人员的备考题库附答案
- GB/T 46758-2025纸浆硫酸盐法蒸煮液总碱、活性碱和有效碱的测定(电位滴定法)
- 2026届福建省龙岩市龙岩一中生物高一第一学期期末综合测试试题含解析
- 2026年上海市普陀区社区工作者公开招聘笔试参考题库及答案解析
- 二元思辨:向外探索(外)与向内审视(内)-2026年高考语文二元思辨作文写作全面指导
- 智能清扫机器人设计与研发方案
- 《中华人民共和国危险化学品安全法》全套解读
- 糖尿病足护理指导
- 甲状腺肿瘤的课件
- 新型铝合金雨棚施工方案
- 战略屋策略体系roadmapPP T模板(101 页)
评论
0/150
提交评论