2014-2018年五年真题分类第十二章概率_第1页
2014-2018年五年真题分类第十二章概率_第2页
2014-2018年五年真题分类第十二章概率_第3页
2014-2018年五年真题分类第十二章概率_第4页
2014-2018年五年真题分类第十二章概率_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十二章 概率考点1 随机事件及其概率1(2018北京,4)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为()A32f B322fC1225f D1227f1.D 因为每一个单音与前一个单音频率比为122,所以an=122an1(n2,nN+),又a1=f,则a8=a1q7=f(122)7=1227f,故选D.2.(2015广东,4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.1 B. C. D.2.C从袋中任取2个球共有C105种取法,其中恰好1个白球1个红球共有CC50种取法,所以所取的球恰好1个白球1个红球的概率为.3.(2014新课标全国,5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A. B. C. D.3.D由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日有1种情况,故周六、周日都有同学参加公益活动的概率为P ,故选D.考点2 古典概型与几何概型1(2018全国,10)下图来自古希腊数学家希波克拉底所研究的几何图形此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,ACABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则()Ap1=p2 Bp1=p3Cp2=p3 Dp1=p2+p31.A 设AC=b,AB=c,BC=a,则有b2+c2=a2,从而可以求得ABC的面积为S1=12bc,黑色部分的面积为S2=(c2)2+(b2)2(a2)212bc =(c24+b24a24)+12bc =c2+b2a24+12bc=12bc,其余部分的面积为S3=(a2)212bc=a2412bc,所以有S1=S2,根据面积型几何概型的概率公式,可以得到p1=p2,故选A.2(2018全国,8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A112 B114 C115 D1182.C 不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C102=45种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为345=115,选C.3.(2017新课标,2)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是()A. B. C. D.3.B 根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S= ,则对应概率P= = ,故选B.4.(2017山东,8)从分别标有1,2,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是() A. B. C. D.4. C 从分别标有1,2,9的9张卡片中不放回地随机抽取2次,共有 =36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有 =20种,故抽到在2张卡片上的数奇偶性不同的概率P= = ,故选C5.(2016全国,4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是() A. B. C. D.5.B 如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB中,而当他的到达时间落在线段AC或DB时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P ,故选B.6.(2016全国,10)从区间0,1随机抽取2n个数x1,x2,xn,y1,y2,yn,构成n个数对(x1,y1),(x2,y2),(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.6.C 由题意得:(xi,yi)(i1,2,n)在如图所示正方形中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知,故选C.7.(2015陕西,11)设复数z(x1)yi(x,yR),若|z|1,则yx的概率为()A. B. C. D.7.B由|z|1可得(x1)2y21,表示以(1,0)为圆心,半径为1的圆及其内部,满足yx的部分为如图阴影所示,由几何概型概率公式可得所求概率为:P.8.(2014陕西,6)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.8.C从这5个点中任取2个,有C10种取法,满足两点间的距离不小于正方形边长的取法有C6种,因此所求概率P .故选C.9.(2014湖北,7)由不等式组确定的平面区域记为1,不等式组确定的平面区域记为2,在1中随机取一点,则该点恰好在2内的概率为()A. B. C. D.9.D由题意作图,如图所示,1的面积为222,图中阴影部分的面积为2,则所求的概率P.选D.10(2018江苏,6)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为_10.310. 从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.11.(2017江苏,7)记函数f(x)= 定义域为D在区间4,5上随机取一个数x,则xD的概率是_ 11. 由6+xx20得x2x60,得2x3,则D=2,3,则在区间4,5上随机取一个数x,则xD的概率P= = ,故答案为:.12.(2016江苏,7)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_.12. 基本事件共有36个.如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中满足点数之和小于10的有30个.故所求概率为P.13.(2016山东,14)在1,1上随机地取一个数k,则事件“直线ykx与圆(x5)2y29相交”发生的概率为_.13. 由已知得,圆心(5,0)到直线ykx的距离小于半径,3,解得k,由几何概型得P.14.(2015江苏,5)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为_.14.这两只球颜色相同的概率为,故两只球颜色不同的概率为1.15.(2015福建,13) 如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)x2,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于_.15.由几何概型的概率公式:P1.16.(2014福建,14)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为_.16.因为函数yex与函数ylnx互为反函数,其图象关于直线yx对称,又因为函数yex与直线ye的交点坐标为(1,e),所以阴影部分的面积为2(e1exdx)2e2ex2e(2e2)2,由几何概型的概率计算公式,得所求的概率P.17.(2014江苏,4)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_.17.从1,2,3,6中随机取2个数,共有6种不同的取法,其中所取2个数的乘积是6的有1,6和2,3,共2种,故所求概率是.18.(2014广东,11)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为_.18.十个数中任取七个不同的数共有C种情况,七个数的中位数为6,那么6只有处在中间位置,有C种情况,于是所求概率P.19.(2014江西,12)10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是_.19.从10件产品中任取4件共有C210种不同的取法,因为10件产品中有7件正品、3件次品,所以从中任取4件恰好取到1件次品共有CC105种不同的取法,故所求的概率为P.20.(2015北京,16)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1) 求甲的康复时间不少于14天的概率;(2) 如果a25,求甲的康复时间比乙的康复时间长的概率;(3) 当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)20. 设事件Ai为“甲是A组的第i个人”,事件Bi为“乙是B组的第i个人”,i1,2,7.由题意可知P(Ai)P(Bi),i1,2,7.(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P(A5A6A7)P(A5)P(A6)P(A7).(2)设事件C为“甲的康复时间比乙的康复时间长”.由题意知,CA4B1A5B1A6B1A7B1A5B2A6B2A7B2A7B3A6B6A7B6.因此P(C)P(A4B1)P(A5B1)P(A6B1)P(A7B1)P(A5B2)P(A6B2)P(A7B2)P(A7B3)P(A6B6)P(A7B6)10P(A4B1)10P(A4)P(B1).(3)a11或a18.考点3 离散型随机变量的分布列、均值与方差1(2018全国,8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,PX=4PX=6,则p=()A0.7 B0.6 C0.4 D0.31.B DX=np(1-p),p=0.4或p=0.6.PX=4=C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论