北师大版七年级数学下册《4.3 第1课时 利用“边边边”判定三角形全等》PPT课件_第1页
北师大版七年级数学下册《4.3 第1课时 利用“边边边”判定三角形全等》PPT课件_第2页
北师大版七年级数学下册《4.3 第1课时 利用“边边边”判定三角形全等》PPT课件_第3页
北师大版七年级数学下册《4.3 第1课时 利用“边边边”判定三角形全等》PPT课件_第4页
北师大版七年级数学下册《4.3 第1课时 利用“边边边”判定三角形全等》PPT课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3探索三角形全等的条件,导入新课,讲授新课,当堂练习,课堂小结,第四章三角形,第1课时利用“边边边”判定三角形全等,北师大版七年级数学下教学课件,1.了解三角形的稳定性,掌握三角形全等的“SSS”判定,并能应用它判定两个三角形是否全等;(重点)2.由探索三角形全等条件的过程,体会由操作、归纳获得数学结论的过程(难点),学习目标,1.什么叫全等三角形?,能够重合的两个三角形叫全等三角形.,3.已知ABCDEF,找出其中相等的边与角.,AB=DE,CA=FD,BC=EF,A=D,B=E,C=F,2.全等三角形有什么性质?,全等三角形的对应边相等,对应角相等.,导入新课,如果只满足这些条件中的一部分,那么能保证ABCDEF吗?,想一想:,即:三条边分别相等,三个角分别相等的两个三角形全等,探究活动1:一个条件可以吗?,(1)有一条边相等的两个三角形,不一定全等,(2)有一个角相等的两个三角形,不一定全等,结论:,有一个条件相等不能保证两个三角形全等.,讲授新课,有两个条件对应相等不能保证三角形全等.,不一定全等,探究活动2:两个条件可以吗?,不一定全等,不一定全等,结论:,(1)有两个角对应相等的两个三角形,(2)有两条边对应相等的两个三角形,(3)有一个角和一条边对应相等的两个三角形,结论:三个内角对应相等的三角形不一定全等.,(1)有三个角对应相等的两个三角形,探究活动3:三个条件可以吗?,(2)三边对应相等的两个三角形会全等吗?,先任意画出一个ABC,再画出一个ABC,使AB=AB,BC=BC,AC=AC.把画好的ABC剪下,放到ABC上,他们全等吗?,A,B,C,想一想:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?,作法:(1)画BC=BC;(2)分别以B,C为圆心,线段AB,AC长为半径画圆,两弧相交于点A;(3)连接线段AB,AC.,动手试一试,文字语言:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”),“边边边”判定方法,在ABC和DEF中,,ABCDEF(SSS).,几何语言:,例1如图,有一个三角形钢架,AB=AC,AD是连接点A与BC中点D的支架是说明:(1)ABDACD,解题思路:,先找隐含条件,公共边AD,再找现有条件,AB=AC,最后找准备条件,BD=CD,D是BC的中点,证明:D是BC中点,BD=DC在ABD与ACD中,,ABDACD(SSS),准备条件,指明范围,摆齐根据,写出结论,(2)BAD=CAD.,由(1)得ABDACD,BAD=CAD.(全等三角形对应角相等),如图,C是BF的中点,AB=DC,AC=DF.试说明:ABCDCF.,在ABC和DCF中,,AB=DC,,ABCDCF,(已知),(已证),AC=DF,,BC=CF,,解:C是BF中点,,BC=CF.,(已知),(SSS).,针对训练,已知:如图,点B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.试说明:(1)ABCDEF;,(2)A=D.,解:,ABCDEF(SSS).,在ABC和DEF中,,AB=DE,AC=DF,BC=EF,,(已知),(已知)(已证),BE=CF,,BC=EF.,BE+EC=CF+CE,,(1),(2)ABCDEF(已证),A=D(全等三角形对应角相等).,E,变式题,解:D是BC的中点,,BD=CD.,在ABD与ACD中,,AB=AC(已知),,BD=CD(已证),,AD=AD(公共边),,ABDACD(SSS),,例2如图,ABC是一个钢架,AB=AC,AD是连接A与BC中点D的支架,试说明:B=C.,B=C.,典例精析,动手做一做,1.将三根木条用钉子钉成一个三角形木架.2.将四根木条用钉子钉成一个四边形木架.,洋葱微视频(单击),请同学们看看:三角形和四边形的模型,扭一扭模型,它们的形状会改变吗?,动动手,不会,会,1.三角形具有稳定性.2.四边形没有稳定性.,发现,理解“稳定性”,“只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.,比一比,谁知道的多,你能举出一些现实生活中的应用了三角形稳定性的例子吗?,ABC(SSS).,(1)如图,AB=CD,AC=BD,ABC和DCB是否全等?试说明理由.,解:ABCDCB.理由如下:AB=CD,AC=BD,=,(2)如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使ABFECD,还需要条件_.,当堂练习,BC,CB,DCB,BF=CD,1.填空题:,A,E,或BD=FC,2.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D美观漂亮,C,3.如图,AB=AC,DB=DC,请说明B=C成立的理由.,A,B,C,D,在ABD和ACD中,,AB=AC(已知),,DB=DC(已知),,AD=AD(公共边),,ABDACD(SSS),,解:连接AD.,B=C(全等三角形的对应角相等).,4.已知AC=AD,BC=BD,试说明:AB是DAC的平分线.,AC=AD(),,BC=BD(),,AB=AB(),,ABCABD(),,1=2,AB是DAC的平分线,(全等三角形的对应角相等),,已知,已知,公共边,SSS,(角平分线定义).,解:在ABC和ABD中,,三边分别相等的两个三角形,三角形全等的“SSS”判定:三边分别相等的两个三角形全等.,课堂小结,三角形的稳定性:三角形三边长度确定了,这个三角形的形状和大小就完全确定了.,“部编本”语文教材解读“部编本”语文教材的编写背景。(一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。(二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。(三)语文、道德与法制、历史三个学科教材统编是大趋势。(四)“一标多本”教材质量参差不齐,“部编本”力图起到示范作用。二、“部编本”教材的编写理念:(一)体现核心价值观,做到“整体规划,有机渗透”。(二)接地气,满足一线需要,对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。(三)加强了教材编写的科学性,编研结合。(四)贴近当代学生生活,体现时代性。“部编本”语文教材的七个创新点:(一)选文创新:课文总数减少,减少汉语拼音的难度。(二)单元结构创新更加灵活的单元结构体制,综合性更强。(三)重视语文核心素养,重建语文知识体系。(四)三位一体,区分不同课型。“教读”、“自读

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论