




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、 什么是一笔画问题?下面这些图形能不能一笔画完,而且每一条线只描绘一次,不得重复?这类题目就叫做一笔画问题,在这些图形中有偶数点和奇数点。二、 柯尼斯堡的七座桥 18世纪,东普鲁士的首府哥尼斯堡是一座景色迷人的城市,普莱格尔河横贯城区,使这座城市锦上添花,显得更加风光旖旋。这条河有两条支流,在城中心汇成大河,在河的中央有一座美丽的小岛。河上有七座各具特色的桥把岛和河岸连接起来。每到傍晚,许多人都来此散步。人们漫步于这七座桥之间,久而久之,就形成了这样一个问题:能不能既不重复又不遗漏地一次相继走遍这七座桥?这就是闻名遐迩的“哥尼 斯堡七桥问题。”每一个到此游玩或散心的人都想试一试,可是,对于这一看似简单的问题,没有一个人能符合要求地从七座桥上走一遍。这个问题后来竟变得神乎其神,说是有一支队伍,奉命要炸毁这七座桥,并且命令要他们按照七桥问题的要求去炸。七桥问题也困扰着哥尼斯堡大学的学生们,在屡遭失败之后,他们给当时著名数学家欧拉写了一封信,请他帮助解决这个问题。欧拉看完信后,对这个问题也产生了浓厚的兴趣。他想,既然岛和半岛是桥梁的连接地点,两岸陆地也是桥梁的连接地点,那就不妨把这四处地方缩小成四个点,并且把这七座桥表示成七条线。这样,原来的七桥问题就抽象概括成了如下的关系图:这显然并没有改变问题的本质特征。于是,七桥问题也就变成了一个一笔画的问题,即 :能否笔不离纸,不重复地一笔画完整个图形。这竟然与孩子们的一笔画游戏联系起来 了。接着,欧拉就对“一笔画”问题进行了数学分析。一笔画有起点和终点,起点和终点重合的图形称为封闭图形,否则便称为开放图形。除起点和终点外,一笔画中间可能出现一些曲线的交点。欧拉注意到,只有当笔沿着一条弧线到达交点后,又能沿着另一条弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称 为“偶点”。如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不能实现,这样的点又叫做“奇点”。 欧拉通过分析,得到了下面的结论:若是一个一笔画图形,要么只有两个奇点,也就是仅有起点和终点,这样一笔画成的图形是开放的;要么没有奇点,也就是终点和起点连接起来,这样一笔画成的图形是封闭的。由于七桥问题有四个奇点,所以要找到一条经过七座桥,但每座桥只走一次的路线是不可能的。数学家欧拉: 1707年4月15日,欧拉诞生于瑞士的巴塞尔。小时候他就特别喜欢数学,不满10岁就开始自学代数学。这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学。这在当时是个奇迹,曾轰动了数学界。小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。欧拉大学毕业后到了俄国的首都彼得堡。在他26岁时,担任了彼得堡科学院的数学教授。1735年,年仅28岁的欧拉,由于要计算一个彗星的轨道,奋战了三天三夜,最后用他自己发明的新方法圆满地解决了这个难题。过度的工作,使欧拉得了眼病,就在那一年他右眼失明了。疾病没有吓倒他,他更加勤奋地工作,写出了几百篇论文,大量出色的研究成果,使他在欧洲科学界享有很高的声望。在他59岁时,仅剩的一只左眼视力衰退,只能模糊地看到物体,最后双目失明。但是工作就是他的生命,他决心用加倍的努力,来回答命运对他的挑战。眼睛看不见,他就口述,由他的儿子记录,继续写作。欧拉凭着他惊人的记忆力和心算能力,在黑暗中整整工作了17年。欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的欧拉还创设了许多数学符号,例如(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),x(1755年),(1755年),f(x)(1734年)等 欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁。欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲。三、 认识奇数点和偶数点 有偶数条线通过的点,叫做偶数点。有奇数条线通过的点,叫做奇数点。四、 能一笔画成的图形的特点u 1.每一个图形的奇数点个数必定是偶数。u 2.若一个图形可以一笔画成,它必为一个连通的图形。 (连通图形:任何两点间都有路径可到)u 3.至多有两个奇数点的图形,必可一笔画成。u 4.若某图形只有两個奇数点,那么其中一个奇数点必定是起点,另一个则是終点。u 5.若某图形上的点都是偶数点,无论从哪一点开始都可一笔画完。u 6.若某图形可用一笔画成,那么只要掌握了起点,而且未走完的图形仍是连通图形,这个图就一定可以一笔画成。五、 小试身手下列哪些图形可以一笔画成? 六、我是智慧小达人下列图形能一笔画成吗?六、 我是小小画家达人这些图画我都能画。七、 欧拉图形的应用可一笔画成、且起点与终点相同的图形,称之为欧拉图形。这是数学家们为紀念欧拉在1736年所提出关于一笔画问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网平台服务合作协议
- 项目管理中的经济数据分析方法试题及答案
- 2025年市政工程环境评估试题及答案
- 分类汇编试题及答案
- 水利水电工程试题及答案详解
- 制胜关键的市政工程试题及答案
- 市政工程课程设置试题及答案
- 水利水电工程在国际合作中的角色及试题及答案
- 过期租房合同后果
- 课程材料采购合同
- 品牌授权并委托加工产品协议书范本
- 湖北省武汉市华师一附中2025届初中生物毕业考试模拟冲刺卷含解析
- 南京2025年江苏南京师范大学招聘专职辅导员9人笔试历年参考题库附带答案详解
- 大学写作知到智慧树章节测试课后答案2024年秋丽水学院
- 中医药适宜技术推广基地建设方案
- 英文电影鉴赏(北华大学)知到智慧树章节答案
- 供电营业规则2024版
- 经济类高等数学(下)期末考试模拟试卷2及参考答案
- 中国螺蛳粉行业政策、市场集中度、企业竞争格局及发展趋势预测报告
- 小学生心理健康讲座5
- 2025届南宁二中、柳州高中高考物理二模试卷含解析
评论
0/150
提交评论