1.1回归分析的基本思想及其初步应用_第1页
1.1回归分析的基本思想及其初步应用_第2页
1.1回归分析的基本思想及其初步应用_第3页
1.1回归分析的基本思想及其初步应用_第4页
1.1回归分析的基本思想及其初步应用_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1回归分析的基本思想及其初步应用,必修3(第二章统计)知识结构,收集数据(随机抽样),整理、分析数据估计、推断,简单随机抽样,分层抽样,系统抽样,用样本估计总体,变量间的相关关系,用样本的频率分布估计总体分布,用样本数字特征估计总体数字特征,线性回归分析,1、两个变量的关系,不相关,相关关系,函数关系,线性相关,非线性相关,问题1:现实生活中两个变量间的关系有哪些呢?,相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。,思考:相关关系与函数关系有怎样的不同?,函数关系中的两个变量间是一种确定性关系相关关系是一种非确定性关系,函数关系是一种理想的关系模型相关关系在现实生活中大量存在,是更一般的情况,问题2:对于线性相关的两个变量用什么方法来刻划之间的关系呢?,2、最小二乘估计,最小二乘估计下的线性回归方程:,回归直线必过样本点的中心,3、回归分析的基本步骤:,画散点图,求回归方程,预报、决策,这种方法称为回归分析.,回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.,课堂互动讲练,该类题属于线性回归问题,解答本类题目的关键首先应先通过散点图来分析两变量间的关系是否相关,然后再利用求回归方程的公式求解回归方程.,(1)画出散点图;(2)求物理成绩y对数学成绩x的回归直线方程;(3)一名学生的数学成绩是96,试预测他的物理成绩.,【思路点拨】先画散点图,分析物理与数学成绩是否有线性相关关系,若相关再利用线性回归模型求解预报变量.,【解】(1)散点图如图:,【题后点评】求回归直线方程的一般方法是:作出散点图,将问题所给的数据在平面直角坐标系中进行描点,这样表示出的两个变量的一组数据的相关图形就是散点图,从散点图中我们可以判断样本点是否呈条状分布,进而判断两个变量是否具有相关关系.,例题1从某大学中随机选出8名女大学生,其身高和体重数据如下表:,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172的女大学生的体重。,1.散点图;2.回归方程:,分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量,探究?,身高为172的女大学生的体重一定是60.316kg吗?如果不是,其原因是什么?,(1)由图形观察可以看出,样本点呈条状分布,身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。(2)从散点图还可以看到,样本点散布在某一条直线的附近,而不是一条直线上,所以不能用一次函数来描述它们之间的关系。这时我们用下面的线性回归模型来描述身高和体重的关系:+其中和为模型的未知参数,e是y与之间的误差,通常称为随机误差。,产生随机误差的原因是什么?,e产生的主要原因:(1)所用确定性函数模拟不恰当;(2)忽略了某些因素的影响;(3)观测误差,如使用的测量工具不同等,函数模型与回归模型之间的差别,一次函数模型:y=bx+a,线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解释部分y的变化.,在统计中,我们也把自变量x称为解释变量,因变量y称为预报变量.,线性回归模型:y=bx+a+e,随机误差,e的估计量,样本点:,相应的随机误差为:,相应的随机误差估计值为:,称为相应于点的残差,实际上即为具体到某点的随机误差估计值。,残差分析,在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否是线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据.这方面的分析工作称为残差分析。,以纵坐标为残差,横坐标为编号,作出图形(残差图)来分析残差特性.,由图可知,第1个样本点和第6个样本点的残差比较大,需要确认在采集这两个样本点的过程中是否有人为的错误.如果数据采集有错误,就予以纠正,然后重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他原因.,问:如何刻画模型拟合的精度?,相关指数:,(1)上式中分子称之为残差平方和,分母为确定的数,(2)R2取值越大(越接近1),则残差平方和越小,即模型的拟合效果越好.反之,取值越小,则残差平方和越大,即模型的拟合效果越差.,(3)在例1中我们可以求出R2=0.64,表明:“女大学生的身高解释了64的体重变化”,或者说“女大学生的体重差异有64是由身高引起的”。,其中:,解释,预报,1,问题四:结合例1思考:用回归方程预报体重时应注意什么?,1.回归方程只适用于我们所研究的样本的总体。2.我们建立的回归方程一般都有时间性。3.样本取值的范围会影响回归方程的适用范围。4.不能期望回归方程得到的预报值就是预报变量的精确值。,涉及到统计的一些思想:模型适用的总体;模型的时间性;样本的取值范围对模型的影响;模型预报结果的正确理解。,建立回归模型的基本步骤:,(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;,(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(是否存在线性关系);,(3)由经验确定回归方程的类型(如观察到数据呈线性关系,则选用线性回归方程y=bx+a);,(4)按一定规则估计回归方程中的参数(如最小二乘法);,(5)得出结果后分析残差图是否异常(个别数据对应残差过大,或残差呈现不随机的规律性等),若存在异常,则检查数据是否有误,或模型是否合适等.,是否存在线性关系,对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块数学1中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决.,例2一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据列于表中:,试建立产卵数y与温度x之间的回归方程;,方法一:一元函数模型,产卵数,气温,变换y=bx+a非线性关系线性关系,对数,方法三:指数函数模型,由计算器得:z关于x的线性回归方程因此y关于x的非线性回归方程为,当x=28时,y44,指数回归模型比二次函数模型更好,1)确定解释变量和预报变量;2)画出散点图;3)确定回归方程类型;4)求出回归方程;5)利用相关指数或残差进行分析.,(1)以施肥量x为解释变量,水稻产量y为预报变量,作出散点图;(2)求y与x之间的回归方程,并求施肥量为28kg时水稻产量的预报值;(3)计算残差,并计算残差平方和;(4)求R2,并说明其含义,(4)计算R2,并作出解释;(5)试预测该运动员训练47次及55次的成绩.,(4)计算相关指数R2计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论