




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.2.2:用坐标表示平移,问题1如图,已知点A的坐标是(-2,-3),把它的横坐标加5,纵坐标不变,得到点A1,点A1的坐标是什么?点A所在位置发生了什么变化?若点A的横坐标不变,纵坐标加4呢?,设置问题引出新课,问题1已知点A的坐标是(-2,-3),把它的横坐标加5,纵坐标不变,得到点A1的坐标是(3,-3),即点A向右平移了5个单位长度;若点A的横坐标不变,纵坐标加4,得到点A2的坐标是(-2,1),即点A向上平移了5个单位长度,问题1(2)把点A向左或向下平移4个单位长度,观察坐标的变化,你能从中发现什么规律吗?(3)再找几个点,对它们进行平移,观察它们的坐标是否按你发现的规律变化?,点A(-2,-3)向右平移5个单位长度,得到点A1,它的坐标是(3,-3)观察点A,点A1的坐标可以发现:点A1的横坐标等于点A的横坐标加5,点A1的纵坐标等于点A的纵坐标类似地,将点A向上或向左或向下平移某个单位长度,找出平移后得到的点的坐标与点A的坐标的关系然后再找几个点,对它们进行平移,发现前面的变化规律仍然成立,探究发现合作交流,说说点或图形的平移引起点的坐标的变化规律?在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点的坐标是(x+a,y)或(x-a,y);将点(x,y)向上(或下)平移b个单位长度,可以得到对应点的坐标是(x,y+b)或(x,y-b),问题2如图4,正方形ABCD四个顶点的坐标分别是A(-2,4),B(-2,3),C(-1,3),D(-1,4),将正方形ABCD向下平移7个单位长度,再向右平移8个单位长度,两次平移后四个顶点相应变为点E,F,G,H(1)点E,F,G,H的坐标分别是什么?,问题2如图4,正方形ABCD四个顶点的坐标分别是A(-2,4),B(-2,3),C(-1,3),D(-1,4),将正方形ABCD向下平移7个单位长度,再向右平移8个单位长度,两次平移后四个顶点相应变为点E,F,G,H(2)如果直接平移正方形ABCD,使点A移到点E,它和我们前面得到的正方形位置相同吗?,巩固应用拓展延伸,练习如图5,将平行四边形ABCD向左平移2个单位长度,向上平移3个单位长度,可以得到平行四边形ABCD,画出平移后的图形,并指出其各个顶点的坐标.,各个顶点的坐标是A(-3,1);B(1,1);C(2,4);D(-2,4),(2)三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系,为什么?(3)若三角形ABC三个顶点的横坐标都加5,纵坐标不变呢?,拓展深入合作交流,问题2如图,三角形ABC三个顶点的坐标分别是:A(4,3),B(3,1),C(1,2),解:A1(-2,3),B1(-3,1),C1(-5,2),即三角形ABC向左平移了6个单位长度,因此所得三角形A1B1C1与三角形ABC的大小、形状完全相同,用类比的思想,把三角形ABC三个顶点的横坐标都加5,纵坐标不变,即三角形ABC向右平移了5个单位长度,因此所得三角形与三角形ABC的大小、形状完全相同,问题3如图,将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,猜想:三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?,思考题:,用类比的思想,探究得到三角形A2B2C2与三角形ABC的大小、形状完全相同,可以看作将三角形ABC向下平移5个单位长度,问题4如图,将三角形ABC三个顶点的横坐标都减去6,同时纵坐标减去5,又能得到什么结论?,将三角形ABC三个顶点的横坐标都减去6,同时纵坐标减去5,分别得到的点的坐标是(-2,-2),(-5,-3),(-3,-4),依次连接这三点,可以发现所得三角形可以由三角形ABC向左平移6个单位长度,再向下平移了5个单位长度三角形的大小、形状完全相同,理解深化归纳总结,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数b,相应的新图形就是把原图形向上(或向下)平移b个单位长度,练习:,1如图,ABC的三个顶点的坐标分别是A(-4,-1),B(-5,-4),C(-1,-3),将这三点的横坐标加6,同时纵坐标加4,分别得到点A,B,C,依次连接A,B,C各点,说明ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 气管技能考试题及答案
- 民法中考试题及答案
- 2025年广州市天河区五一小学教师招聘考试笔试试题(含答案)
- 北京知识付费主播培训课件
- 医学综合考试题(附参考答案)
- 压力性损伤诊疗与护理规范理论考核试题及答案
- 医用Ⅲ类射线装置试题及答案
- 各种注射技术操作并发症预防及处理试题(有答案)
- 2025年高压电工(复审)电工作业模拟考试题及答案
- 2024年税务师题库及答案(典优)
- 2025-2030年中国快速消费品行业市场深度调研及竞争格局与投资研究报告
- 运营管理核心知识点
- 邯郸介绍课件
- 2025至2030中国硼酸行业发展方向及供需趋势研究报告
- DB11T 634-2025 建筑物在用电子系统雷电防护装置检查规范
- 电力工程施工安全风险管理措施
- 2025年届高考生物复习知识点总结模版
- 部队炊事基础知识课件
- 机场商业布局优化策略研究-全面剖析
- 新课标解读丨《义务教育道德与法治课程标准(2022年版)》解读课件
- 2024年4月27日福建省事业单位《综合基础知识》笔试真题及答案
评论
0/150
提交评论