狭义相对论与时空观_第1页
狭义相对论与时空观_第2页
狭义相对论与时空观_第3页
狭义相对论与时空观_第4页
狭义相对论与时空观_第5页
已阅读5页,还剩93页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.1Galilean-NewtonianRelativity4.2*TheMichelson-MorleyExperiment4.3PostulatesoftheSpecialTheoryRelativity4.4Simultaneity4.5TimeDilationandtheTwinParadox4.6LengthContraction4.7Four-DimensionalSpace-Time4.8GalileanandLorentzTransformations4.9RelativisticMomentumandMass4.10TheUltimateSpeed4.11EnergyandMass;E=mc24.12*DopplerShiftforLight,狭义相对论与时空观,SpecialTheoryofRelativity,Forinertialreferenceframes.,GeneralTheoryofRelativity,Fornon-inertialreferenceframes.,(1916),AlbertEinstein(18791955),1921:Nobelprize,(1905),QuantumofLight,(1905),爱因斯坦的哲学观念:自然界应当是和谐而简单的.理论特色:出于简单而归于深奥.,4.1Galilean-NewtonianRelativity,IntwoinertialframesAandB,whichrelativevelocityis,InertialframeisoneinwhichNewtonslawhold,Theparticlesvelocityis,Theaccelerationis,AccordingtoNewtonssecondlaw,经典力学的相对性原理,Observersindifferentinertialframedagreeonthenetforceactingonanobject.,Newtonssecondlaw,Galilean-NewtonianRelativitytoMechanics,Galilean-NewtonianRelativitytoMechanics:thatthebasiclawsofphysicsarethesameinallinertialreferenceframes.,经典力学的相对性原理:对于任何惯性参照系,牛顿力学的规律都具有相同的形式.,Allinertialreferenceframesareequivalentforthedescriptionofmechanicalphenomena.,伽利略变换,经典力学认为1)空间的量度是绝对的,与参考系无关;2)时间的量度也是绝对的,与参考系无关.,TheSpacetimeCoordinatesofAnEvent(事件):(x,y,z,t),Four-DimensionalSpace-Time,在两相互作匀速直线运动的惯性系中,牛顿运动定律具有相同的形式.,伽利略变换,相对于不同的参考系,长度和时间的测量结果是一样的吗?,绝对时空概念:时间和空间的量度和参考系无关,长度和时间的测量是绝对的.,二经典力学的绝对时空观,牛顿力学的相对性原理,在宏观、低速的范围内,是与实验结果相一致的.,实践已证明,绝对时空观是不正确的.,对于不同的惯性系,电磁现象基本规律的形式是一样吗?,真空中的光速,对于两个不同的惯性参考系,光速满足伽利略变换吗?,结果:观察者先看到投出后的球,后看到投出前的球.,试计算球被投出前后的瞬间,球所发出的光波达到观察者所需要的时间.(根据伽利略变换),900多年前(公元1054年5月)一次著名的超新星爆发,这次爆发的残骸形成了著名的金牛星座的蟹状星云。北宋天文学家记载从公元1054年1056年均能用肉眼观察,特别是开始的23天,白天也能看见.,物质飞散速度,当一颗恒星在发生超新星爆发时,它的外围物质向四面八方飞散,即有些抛射物向着地球运动,现研究超新星爆发过程中光线传播引起的疑问.,实际持续时间约为22个月,这怎么解释?,理论计算观察到超新性爆发的强光的时间持续约,A点光线到达地球所需时间,B点光线到达地球所需时间,4.2TheMichelson-MorleyExperiment,MichelsonsInterferometer,迈克尔孙莫雷实验,为了测量地球相对于“以太”的运动,1881年迈克尔孙用他自制的干涉仪进行测量,没有结果.1887年他与莫雷以更高的精度重新做了此类实验,仍得到零结果,即未观测到地球相对“以太”的运动.,MichelsonsInterferometer,IfM2ismovedby,thenandthefringepatternisshiftedbyonefringe,设“以太”参考系为S系,实验室为系,(从系看),人们为维护“以太”观念作了种种努力,提出了各种理论,但这些理论或与天文观察,或与其它的实验相矛盾,最后均以失败告终.,仪器可测量精度,实验结果未观察到地球相对于“以太”的运动.,MichelsonsInterferometer,MichelsonsInterferometer46”,MichelsonsInterferometer46”,1.TheRelativityPostulate:,4.3PostulatesoftheSpecialTheoryRelativity,Thelawsofphysicsarethesameforminallinertialreferenceframes.Noframeisperfected.,2.ConstancyoftheSpeedofLightPostulate:,Lightpropagatesthroughemptyspacewithadefinitespeedcindependentofthespeedofthesourceorobserver.,TheUltimateSpeed:,一狭义相对论的基本原理,1)爱因斯坦相对性原理:物理定律在所有的惯性系中都具有相同的表达形式.,2)光速不变原理:真空中的光速是常量,它与光源或观察者的运动无关,即不依赖于惯性系的选择.,关键概念:相对性和不变性.,相对性原理是自然界的普遍规律.,所有的惯性参考系都是等价的.,伽利略变换与狭义相对论的基本原理不符.,TheRelativityofSimultaneity,4.4Simultaneity,事件1:车厢后壁接收器接收到光信号.事件2:车厢前壁接收器接收到光信号.,和光速不变紧密联系在一起的是:在某一惯性系中同时发生的两个事件,在相对于此惯性系运动的另一惯性系中观察,并不一定是同时发生的.,TheRelativityofSimultaneity,(Simultaneity),InS:,InS:,ACloserLookatSimultaneity(2),TheRelativityofTheTimeInterval,4.5TimeDilationandtheTwinParadox,运动的钟走得慢,TheRelativityoftheTimeInterval,(时间的延缓),ProperTimeInterval(固有时间),Thepropertimeisthetimeintervalbetweentwoeventsoccuratthesamelocationinaninertialreferenceframe.,(propertime),TimeDilation(时间延缓),Clocksmovingrelativetoanobserveraremeasuredbythatobservertorunmoreslowly(ascomparedtoclocksatrest),(Lorentzfactor),(speedparameter),TimeDilation(时间延缓),TheLorentzFactor,Thespeedparameter,TheTestsofTimeDilation,1.MicroscopicClocks,Thelifetimeofmuons()intherestframeis:,Whenthemuonsaremovingatspeedv=0.9994c:,2.MacroscopicClocks,TheTimeDilation(2),Inatravelingboxcar,awell-equippedhobofiresalaserpulsefromthefrontoftheboxcartoitsrear.Isourmeasurementofthespeedofthepulsegreaterthan,lessthan,orthesameasthatmeasurementbythehobo?(b)Ishismeasurementoftheflighttimeofthepulseapropertime?(c)Arehismeasurementandourmeasurementoftheflighttimerelatedby?,Solution:,CP.1(H.p.928),(a)Same(Bythespeedofpostulate).,(b)no.,Thepropertimeisthetimeintervalbetweentwoeventsoccuratthesamelocationinaninertialreferenceframe.,(c)no.,A,B,YourstarshippassesEarthwitharelativespeedof0.9990c.Aftertraveling10.0y(yourtime),youstopatlookoutpostLP13,turn,andthentravelbacktoEarthwiththesamerelativespeed.Thetripbacktakesanother10.0y(yourtime).HowlongdoestheroundtriptakeaccordingtomeasurementsmadeonEarth?(Neglectanyeffectsduetotheaccelerationsinvolvedwithstopping,turning,andgettingbackuptospeed.),Solution:,Ex.2(H.p.928),Event1:thestartofthetripatEarthEvent2:theendofthetripatLP13.,t1=0,t1=0,Inyourframe:,InEarthframe:,InEarthframe:,E,P,AstudentmustcompleteatestintheteachersframeofreferenceS.Thestudentputsonhisrocketskatesandsoonismovingataconstantspeedof0.75crelativitytotheteacher.When1h(onehour)haspassedontheteachersclock,howmuchtimehaspassedonaclockthatmoveswiththestudent,asmeasuredbytheteacher?,Solution:,Ex.3,ForastudentrestsintheteachersframeS:,ForamovingclockwiththestudentinframeS:,t1=0,t1=0,TheTwinsParadox(343”),Sally,Sally,TheProperLength(RestLength),4.6LengthContraction,TheproperlengthL0oftheplatformmeasuredbySam:ThetrainmovesthroughthelengthL0inatime:,ForSally,LengthLoftheplatform:,Sally,LengthContraction(长度收缩),(ContractedLength),Therelativemotioncausesalengthcontraction!,Inthefigure,Sally(atpointA)andSamsspaceship(ofproperLengthL0=230m)passeachotherwithconstantrelativespeedv.Sallymeasuresatimeintervalof3.57sfortheshiptopassher.Intermsofc,whatistherelativespeedvbetweenSallyandtheship?,Solution:,Ex.4(H.p.931),InSallysframe:,InSamsframe:L0,Therelativespeed:,TheTestsofTimeDilation,1.MicroscopicClocks,Thelifetimeofmuons()intherestframeis:,Whenthemuonsaremovingatspeedv=0.9994c:,2.MacroscopicClocks,AstudentmustcompleteatestintheteachersframeofreferenceS.Thestudentputsonhisrocketskatesandsoonismovingataconstantspeedof0.75crelativitytotheteacher.When1h(onehour)haspassedontheteachersclock,howmuchtimehaspassedonaclockthatmoveswiththestudent,asmeasuredbytheteacher?,Solution:,Ex.,ForastudentrestsintheteachersframeS:,ForamovingclockwiththestudentinframeS:,t1=0,t1=0,(a)C1tt,Afriendofyourtravelsbyyouinherfastsportscarataspeedof0.660c.Itismeasuredinyourframetobe4.80mlongand1.25mhigh.(a)Whatwillbeitslengthandheightatrest?(b)Howmanysecondswouldyousayelapsedonyourfriendswatchwhen20.0spassedonyou?(c)Howfastdidyouappeartobetravelingaccordingtoyourfriend?(d)Howmanysecondswouldshesayelapsedonyourwatchwhenshesaw20.0spassonher?,Solution:,10(p.758),Afriendofyourtravelsbyyouinherfastsportscarataspeedof0.660c.Itismeasuredinyourframetobe4.80mlongand1.25mhigh.(a)Whatwillbeitslengthandheightatrest?(b)Howmanysecondswouldyousayelapsedonyourfriendswatchwhen20.0spassedonyou?(c)Howfastdidyouappeartobetravelingaccordingtoyourfriend?(d)Howmanysecondswouldshesayelapsedonyourwatchwhenshesaw20.0spassonher?,Solution:,10(p.758),狭义相对论的时空观1)两个事件在不同的惯性系看来,它们的空间关系是相对的,时间关系也是相对的,只有将空间和时间联系在一起才有意义.2)时空不互相独立,而是不可分割的整体.3)光速C是建立不同惯性系间时空变换的纽带.,3)时,.,1)时间延缓是一种相对效应.,2)时间的流逝不是绝对的,运动将改变时间的进程.(例如新陈代谢、放射性的衰变、寿命等.),TheSpacetimeCoordinatesofAnEvent:(x,y,z,t),4.7Four-DimensionalSpace-Time,x=3.7m,y=1.2m,z=0m,t=34.5s,TheGalileanTransformationEquations,4.8GalileanandLorentzTransformation,y=y,z=z(Approximatelyvalidatlowspeed),TheLorentzTransformationEquations,(validatallphysicallypossiblespeed),TheGalileanTransformationforPairofEvents,LetlabelEvent1forx1,t1andEvent2forx2,t2,then,TheLorentzTransformationforPairofEvents,TheLorentzTransformation(130”),Foreachsituation,ifwechoosetheblueframetobestationary,thenisvintheequationsofTable38-2apositiveornegativequantity?,Solution:,CP3.(p.933),(a)positive,(b)negative,(c)positive,Table38-2,Simultaneity,ConsequencesoftheLorentzTransformationEquations,IftwoeventsoccuratdifferenceplacesinS:,andtheeventsaresimultaneousinS:,(simultaneousinS),InS:,(notsimultaneousinS),Simultaneity,ConsequencesoftheLorentzTransformationEquations,IftwoeventsoccuratdifferenceplacesinS:,andtheeventsaresimultaneousinS:,InS:,TimeDilation,InS:,TheGalileanTransformationforPairofEvents,LetlabelEvent1forx1,t1andEvent2forx2,t2,then,TheLorentzTransformationforPairofEvents,LengthConstantinGalileanTransformation,Ifweput,Therodsendpointsaremeasuredsimultaneously.,LengthContraction,Ifweput,Therodsendpointsaremeasuredsimultaneously.,Astheshipfollowsastraight-linecoursefirstpasttheplanetandthenpastthemoon,itdetectsahigh-energymicrowaveburstattheReptulianmoonbaseandthen,1.10slater,anexplosionattheEarthoutpost,whichis4.00108mfromtheReptilianbaseasmeasuredfromtheshipsreferenceframe.TheReptulianshaveobviouslyattackedtheEarthoutpost,sothestarshipbeginstoprepareforaconfrontationwiththem.,Solution:,SP4.(p.935),InSframe:,Earthoutpost,(a)Thespeedoftheshiprelativetotheplanetanditsmoonis0.980c.Whatarethedistanceandtimeintervalbetweentheburstandtheexplosionasmeasuredintheplanet-mooninertialframe?,Solution:,SP4.(p.935),InSframe:,InSframe:,Solution:,SP4.(p.935),(b)Whatisthemeaningoftheminussighinthevaluefor?,InSframe:,InSframe:,(c)Doestheburstcausetheexplosion,orviceversa?,InSframe:,Impossible!,Theburstdosentcausetheexplosion,theyareunrelatedevents!,讨论:1)在某一惯性系中的同步钟,在另一相对其运动的惯性系中是否是同步的?2)两事件发生的时序与因果律,即在系中观测,事件1有可能比事件2先发生、同时发生、或后发生,时序有可能倒置。,与因果律是否矛盾?,有因果关联的事件时序不变,无因果关联的事件才可能发生时序变化。,Solution:,IntheoldWest,amarshalridingonatraintraveling50m/sseesaduelbetweentwomenstandingontheEarth50mapartparalleltothetrain.Themarshalsinstrumentsindicatethatinhisreferenceframethetwomenfiredsimultaneously,(a)Whichofthetwomen,thefirstonethetrainpasses(A)orthesecondone(B)shouldbearrestedforfiringthefirstshot?Thatis,inthegunfightersframeofreference,whofiredfirst?(b)Howmuchearlierdidhefire?(c)Whowasstruckfirst?,22(p.759),Solution:,IntheoldWest,amarshalridingonatraintraveling50m/sseesaduelbetweentwomenstandingontheEarth50mapartparalleltothetrain.Themarshalsinstrumentsindicatethatinhisreferenceframethetwomenfiredsimultaneously,(a)Whichofthetwomen,thefirstonethetrainpasses(A)orthesecondone(B)shouldbearrestedforfiringthefirstshot?Thatis,inthegunfightersframeofreference,whofiredfirst?(b)Howmuchearlierdidhefire?(c)Whowasstruckfirst?,22(p.759),TheGalileanVelocityTransformation,TheLorentzVelocityTransformation,TheLorentzVelocityTransformation,TheLorentzVelocityTransformation(40),4.9RelativisticMomentumandMass,ClassicalMomentum,(lowspeed),牛顿定律与光速极限的矛盾,物体在恒力作用下的运动,经典力学中物体的质量与运动无关,ClassicalMomentum,(lowspeed),RelativityMomentum,RelationofMassandVelocity,4.10TheUltimateSpeed,TheUltimateSpeed,Noentitythatcarriesenergyorinformationcanexceedthelimitc.,Testingthespeedoflightpostulate,Neutralpion:v=0.99975c,Newtons2ndLawinRelativity,4.11EnergyandMass;E=mc2,TheRelativisticKineticEnergy,Foraparticle,Usingthework-energytheorem,TheRelativisticKineticEnergy,TheRelativisticKineticEnergy,(classicalkineticenergy),(Relativistickineticenergy),TheRelativisticKineticEnergy,MassEnergy(RestEnergy),TotalEnergy,MomentumandKineticEnergy,质能关系预言:物质的质量就是能量的一种储藏.,电子的静质量,电子的静能,质子的静能,相对论质能关系,1千克的物体所包含的静能,1千克汽油的燃烧值为焦耳.,静能:物体静止时所具有的能量.,质子的静质量,质能关系预言:物质的质量就是能量的一种储藏。,相对论能量和质量守恒是一个统一的物理规律。,1千克的物体所包含的静能,1千克汽油的燃烧值为焦耳.,例:,现有100座楼,每楼200套房,每套房用电功率10000W,总功率,每天用电10小时,年耗电量,可用约33年。,反应质量亏损,释放能量,1kg核燃料释放能量,锂原子的核反应,两粒子所具有的总动能,两粒子质量比静质量增加,惯性质量的增加和能量的增加相联系,质量的大小应标志着能量的大小,这是相对论的又一极其重要的推论.,相对论的质能关系为开创原子能时代提供了理论基础,这是一个具有划时代的意义的理论公式.,四质能公式在原子核裂变和聚变中的应用,质量亏损,原子质量单位,放出的能量,1g铀235的原子裂变所释放的能量,1核裂变,我国于1958年建成的首座重水反应堆,2轻核聚变,释放能量,质量亏损,轻核聚变条件温度要达到时,使具有的动能,足以克服两之间的库仑排斥力.,例1设一质子以速度运动.求其总能量、动能和动量.,解质子的静能,也可如此计算,例2已知一个氚核和一个氘核可聚变成一氦核,并产生一个中子,试问这个核聚变中有多少能量被释放出来.,解核聚变反应式,氘核和氚核聚变为氦核的过程中,静能量减少了,Energy,TheDopplerEffectforLight,4.12DopplerShiftforLight,(sourceanddetectorseparation),Low-SpeedDopplerEffect,(sourceanddetectorseparation),(vistherelativevelocitybetweensourceanddetector),AstronomicalDopplerEffect,-correspondingtomotionawayfromus+correspondingtomotiontowardus,radialspeedoflightsource,vc,DopplerShift,RedShift:,BlueShift:,f0properfrequency,correspondingtomotionawayfromuscorrespondingtomotiontowardus,TransverseDopplerEffect,T0properperiod,ThefigureshowscurvesofintensityversuswavelengthforlightreachingusfrominterstellargasontwooppositesidesofgalaxyM87.Onecurvepeaksat499.8nm;Theotherat501.6nm.Thegasorbitsthecoreofthegalaxyataradiusr=100light-year,apparentlymovingtowardusononesideofthecoreandmovingawayfromusontheoppositeside.(a)Whichcurvecorrespondstothegasmovingtowardus?WWhatisthevofthegastous?,Solution:,SP5.(p.939),501.6nm:correspondingtomotionawayfromus499.8nm:correspondingtomotiontowardus,Properwavelength:,Thespeedofthegas:,TheDopplershift:,Aspaceshipofrestlength130mracespastatimingstationataspeedof0.740c.(a)Whatisthelengthofthespaceshipasmeasuredbythetimingstation?(b)Whattimeintervalwillthestationclockrecordbetweenthepassageofthefrontandbackendsoftheship?,Solution:,11P.(p.949),(a)Therestlengthofthespaceship:L0=130manditslengthLasmeasuredbythetimingstationLTherefore,L=87.4m.(b)Thetimeintervalforthepassageofthespaceshipis,(a)Isthespatialseparationxbetweenthefiringoftheprotonanditsimpactapositiveornegativequantity?(b)Isthetemporalseparationtbetweenthoseeventsapositiveornegativequantity?,Solution:,Q.5(p.948),(a)negative,(b)positive,Fig.ashowstwoclocksinstationaryframeS(theyaresynchronizedinthatframe)andoneclockinmovingframeS.ClocksC1andC1readzerowhentheypasseachother.WhenclocksC1andC2passeachother,(a)Whichclockhasthesmallerreading?and(b)whichclockmeasuresapropertime?,Solution:,Q.2(p.947),(b)C1,t1=0,t1=0,(a)C1t1t2,Solution:,(a)C1:t1t2,(b)C1,Fig.bshowstwoclocksinstationaryframeS(theyaresynchronizedinthatframe)andoneclockinmovingframeS.ClocksC1andC1readzerowhentheypasseachother.WhenclocksC1andC2passeachother,(a)Whichclockhasthesmallerreading?and(b)whichclockmeasuresapropertime?,Q.3(p.947),Quasarsarethoughttobethenucleiofactiongalaxiesintheearlystagesoftheirformation.Atypicalquasarradiatesenergyattherateof1041W.Atwhatrateisthemassofthisquasarbeingreducedtosupplythisenergy?,Solution:,37P.(p.950),SincetherestenergyE0andthemassmofthequasararerelatedbyE0=mc2,theratePofenergyradiationandtherateofmasslossarerelatedbyP=dE0/dt=(dm/dt)c2.Thus,Sinceasolarmassis2.01030kgandayearis3.156107s,Showthatwhenthekineticenergyofaparticleequalsitsrestenergy,thespeedoftheparticleisabout0.866c,Solution:,35(p.759),Whatisthemomentumofa750-MeVproton(thatis,itskineticenergyis750MeV)?,Solution:,39(p.759),Twoidenticalparticlesofrestmassmapproacheachotheratequalandoppositespeeds,v.Thecollisioniscompletelyinelasticandresultsinasingleparticleatrest.Whatistherestmassofthenewparticle?Howmuchenergywaslostinthecollision?Howmuchkineticenergyislostinthiscollision?,Solution:,43(p.760),(a)Whatisthespeedofanelectronwhosekineticenergyis10,000timesitsrestenergy?SuchspeedsarereachedintheStanfordLinearAccelerator,SLAC.(b)Iftheelectronstravelinthelabthroughatube3.0kmlong(asatSIAC),howlongisthistubeintheelectronsreferenceframe?,Solution:,65(p.761),Afriendofyourtravelsbyyouinherfastsportscarataspeedof0.660c.Itismeasu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论