




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,转化,可分离变量微分方程,第二节,解分离变量方程,可分离变量方程,.,分离变量方程的解法:,设y(x)是方程的解,两边积分,得,则有恒等式,当G(y)与F(x)可微且G(y)g(y)0时,的隐函数y(x)是的解.,则有,称为方程的隐式通解,或通积分.,同样,当F(x)=f(x)0,时,由确定的隐函数x(y)也是的解.,设左右两端的原函数分别为G(y),F(x),说明由确定,.,例1.求微分方程,的通解.,解:分离变量得,两边积分,得,即,(C为任意常数),或,说明:在求解过程中每一步不一定是同解变形,因此可能增、,减解.,(此式含分离变量时丢失的解y=0),.,练习:,解法1分离变量,即,(C0),解法2,故有,积分,(C为任意常数),所求通解:,积分,.,例2.求下述微分方程的通解:,解:令,则,故有,即,解得,(C为任意常数),所求通解:,.,例3.解初值问题,解:分离变量得,两边积分得,即,由初始条件得C=1,(C为任意常数),故所求特解为,.,例4.,子的含量M成正比,求在,衰变过程中铀含量M(t)随时间t的变化规律.,解:根据题意,有,(初始条件),对方程分离变量,即,利用初始条件,得,故所求铀的变化规律为,然后积分:,已知t=0时铀的含量为,已知放射性元素铀的衰变速度与当时未衰变原,.,例5.,成正比,求,解:根据牛顿第二定律列方程,初始条件为,对方程分离变量,然后积分:,得,利用初始条件,得,代入上式后化简,得特解,并设降落伞离开跳伞塔时(t=0)速度为0,设降落伞从跳伞塔下落后所受空气阻力与速度,降落伞下落速度与时间的函数关系.,t足够大时,.,内容小结,1.微分方程的概念,微分方程;,定解条件;,2.可分离变量方程的求解方法:,说明:通解不一定是方程的全部解.,有解,后者是通解,但不包含前一个解.,例如,方程,分离变量后积分;,根据定解条件定常数.,解;,阶;,通解;,特解,y=x及y=C,.,找出事物的共性及可贯穿于全过程的规律列方程.,常用的方法:,1)根据几何关系列方程(如:P298题5(2),2)根据物理规律列方程,3)根据微量分析平衡关系列方程,(2)利用反映事物个性的特殊状态确定定解条件.,(3)求通解,并根据定解条件确定特解.,3.解微分方程应用题的方法和步骤,例4,例5,例6,.,思考与练习,求下列方程的通解:,提示:,(1)分离变量,(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海洋价格指数编制与发布创新创业项目商业计划书
- 无人零售创新创业项目商业计划书
- 海洋捕捞冷链物流创新创业项目商业计划书
- 2025贵州省卫生中心第十三届贵州人才博览会引才1人模拟试卷及答案详解(夺冠系列)
- 财务人员日常工作操作流程模板
- 2025-2030骨科植入物材料创新与老龄化市场需求匹配度研究报告
- 2025-2030风电叶片回收再利用技术路线经济评估报告
- 2025-2030非洲猪瘟常态化防控下药用饲料配方革新指南
- 2025-2030非常规饲料资源开发利用技术经济性分析专题报告
- 2025-2030青年公寓行业数据驱动与智能化运营管理报告
- 2025年学校少先队知识应知应会题库(含答案)
- (2025)企业首席质量官培训考核试题(附含答案)
- DB31∕T 1545-2025 卫生健康数据分类分级要求
- 起重机指挥Q1练习测试题附答案
- 《网络与新媒体概论》教学课件合集
- 2023类器官技术与行业研究报告-复刻结构重现功能 构建组织器官替身
- 国有资产交易法律实务与疑难问题
- 中华人民共和国基本医疗卫生与健康促进法课件
- 初中毕业证在哪里查询
- 九宫格智力数独200题(题答案)版
- GB/T 5796.4-2022梯形螺纹第4部分:公差
评论
0/150
提交评论