




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.1.4二次函数y=ax2+bx+c的图象和性质,第二十二章二次函数,第2课时用待定系数法求二次函数的解析式,1.会用待定系数法求二次函数的解析式.(难点)2.会根据待定系数法解决关于二次函数的相关问题.(重点),导入新课,复习引入,1.一次函数y=kx+b(k0)有几个待定系数?通常需要已知几个点的坐标求出它的解析式?,2.求一次函数解析式的方法是什么?它的一般步骤是什么?,2个,2个,待定系数法,(1)设:(表达式)(2)代:(坐标代入)(3)解:方程(组)(4)还原:(写解析式),讲授新课,探究归纳,问题1(1)二次函数y=ax2+bx+c(a0)中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?,3个,3个,(2)下面是我们用描点法画二次函数的图象所列表格的一部分:,解:设这个二次函数的解析式是y=ax2+bx+c,把(-3,0),(-1,0),(0,-3)代入y=ax2+bx+c得,选取(-3,0),(-1,0),(0,-3),试求出这个二次函数的解析式.,解得,所求的二次函数的解析式是y=-x2-4x-3.,待定系数法步骤:1.设:(表达式)2.代:(坐标代入)3.解:方程(组)4.还原:(写解析式),这种已知三点求二次函数解析式的方法叫做一般式法.其步骤是:设函数解析式为y=ax2+bx+c;代入后得到一个三元一次方程组;解方程组得到a,b,c的值;把待定系数用数字换掉,写出函数解析式.,归纳总结,一般式法求二次函数解析式的方法,解:(-3,0)(-1,0)是抛物线y=ax2+bx+c与x轴的交点.所以可设这个二次函数的解析式是y=a(x-x1)(x-x2).(其中x1、x2为交点的横坐标.因此得,y=a(x+3)(x+1).,再把点(0,-3)代入上式得,a(0+3)(0+1)=-3,,解得a=-1,,所求的二次函数的解析式是y=-(x+3)(x+1),即y=-x2-4x-3.,选取(-3,0),(-1,0),(0,-3),试出这个二次函数的解析式.,归纳总结,交点法求二次函数解析式的方法,这种知道抛物线x轴的交点,求解析式的方法叫做交点法.其步骤是:设函数解析式是y=a(x-x1)(x-x2);先把两交点的横坐标x1,x2代入坐标代入,得到关于a的一元一次方程;将方程的解代入原方程求出a值;a用数值换掉,写出函数解析式.,想一想确定二次函数的这三点应满足什么条件?,任意三点不在同一直线上(其中两点的连线可平行于x轴,但不可以平行y轴.,选取顶点(-2,1)和点(1,-8),试求出这个二次函数的解析式.,解:设这个二次函数的解析式是y=a(x-h)2+k,把顶点(-2,1)代入y=a(x-h)2+k得,y=a(x+2)2+1,,再把点(1,-8)代入上式得,a(1+2)2+1=-8,,解得a=-1.,所求的二次函数的解析式是y=-(x+2)2+1或y=-x2-4x-3.,归纳总结,顶点法求二次函数的方法,这种知道抛物线的顶点坐标,求解析式的方法叫做顶点法.其步骤是:设函数解析式是y=a(x-h)2+k;先代入顶点坐标,得到关于a的一元一次方程;将另一点的坐标代入原方程求出a值;a用数值换掉,写出函数解析式.,想一想直接观察上面表格,你能猜想出当x=-6时,该二次函数对应的函数值是多少?,-15,利用二次函数图象的对称性.即由表格信息可知,抛物线的对称轴是直线x=-2,横坐标为2和-6的两点必定是该抛物线上的一对对称点,故可知x=-6与x=2的函数值必定相等.,y=-x2-4x-3,当堂练习,1.如图,平面直角坐标系中,函数图象的表达式应是.,注意y=ax2与y=ax2+k、y=a(x-h)2、y=a(x-h)2+k一样都是顶点式,只不过前三者是顶点式的特殊形式.,x,y,O,1,2,-1,-2,-3,-4,3,2,1,-1,3,4,5,2.过点(2,4),且当x=1时,y有最值为6,则其解析式是.,顶点坐标是(1,6),y=-2(x-1)2+6,3.综合题:如图,已知二次函数的图象经过A(2,0),B(0,6)两点(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求ABC的面积,(1),(2)ABC的面积是6.,课堂小结,已知三点坐标,已知顶点坐标或对称轴或最值,已知抛物线与x轴的两个交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 村级环保协议书
- 林地区位协议书
- 林地调解协议书
- 柚子种植协议书
- 2025年中医养生考试试题及答案
- 2025年建流水施工试题及答案
- 2025年安全管理试题中级及答案
- 2025年客服服务专业试题及答案
- 可穿戴医疗设备在慢性病管理中的应用现状及2025年市场发展趋势报告
- 2025年农村电商农产品上行模式创新报告:品牌影响力提升路径
- 2025年北京市人力资源市场薪酬数据报告(二季度)
- 2025至2030年中国八仙花市场现状分析及前景预测报告
- 药品管理法简易
- 酒吧合伙合作协议书范本
- 2025年营养师(中级)职业技能鉴定模拟试题库
- 医院用电接入方案
- 专题:阅读理解30篇 八年级英语下期期末高频易错考点专练(人教版)带参考答案详解
- 大件运输安全管理制度
- 公寓设计概念方案
- 中考数学总复习《解直角三角形的应用》专项检测卷(附答案)
- DB32∕T 4906-2024 科技报告编写规范
评论
0/150
提交评论