高中数学3.3简单的线性规划二课件新人教A必修5_第1页
高中数学3.3简单的线性规划二课件新人教A必修5_第2页
高中数学3.3简单的线性规划二课件新人教A必修5_第3页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,简单的线性规划,第二讲线性规划,可行域上的最优解,2020/5/3,复习判断二元一次不等式表示哪一侧平面区域的方法,x+y-10,x+y-10表示这一直线哪一侧的平面区域,特殊地,当c0时常把原点作为此特殊点,2020/5/3,复习回顾,1.在同一坐标系上作出下列直线:,2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7,x,Y,o,2020/5/3,2.作出下列不等式组的所表示的平面区域,2020/5/3,y,问题1:x有无最大(小)值?,问题2:y有无最大(小)值?,问题3:2x+y有无最大(小)值?,2020/5/3,二.提出问题,把上面两个问题综合起来:,设z=2x+y,求满足,时,z的最大值和最小值.,2020/5/3,y,直线L越往右平移,t随之增大.,以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.,线性规划,问题:设z=2x+y,式中变量满足下列条件:求z的最大值与最小值。,目标函数(线性目标函数),线性约束条件,任何一个满足不等式组的(x,y),可行解,可行域,所有的,最优解,线性规划问题,线性规划,线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,可行解:满足线性约束条件的解(x,y)叫可行解;,可行域:由所有可行解组成的集合叫做可行域;,最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。,可行域,2x+y=3,2x+y=12,(1,1),(5,2),线性规划,练习1:解下列线性规划问题:求z=2x+y的最大值和最小值,使式中x、y满足下列条件:,解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值。,探索结论,2x+y=0,2x+y=-3,2x+y=3,答案:当x=-1,y=-1时,z=2x+y有最小值3.,当x=2,y=-1时,z=2x+y有最大值3.,线性规划,例2解下列线性规划问题:求z=300 x+900y的最大值和最小值,使式中x、y满足下列条件:,探索结论,x+3y=0,300 x+900y=0,300 x+900y=112500,答案:当x=0,y=0时,z=300 x+900y有最小值0.,当x=0,y=125时,z=300 x+900y有最大值112500.,练习2、已知求z=3x+5y的最大值和最小值。,5,5,1,O,x,y,1,-1,5x+3y=15,X-5y=3,y=x+1,A(-2,-1),B(3/2,5/2),z=3x+5y,变式:目标函数为:z=3x-y,C(3,0),走进高考:,C,解线性规划问题的步骤:,(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;,(3)求:通过解方程组求出最优解;,(4)答:作出答案。,(1)画:画出线性约束条件所表示的可行域;,小结,几个结论:,1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义在y轴上的截距或其相反数。,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论