


免费预览已结束,剩余19页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第37讲空间中的平行关系,第37讲空间中的平行关系,第37讲知识梳理,1空间中直线与平面的位置关系,第37讲知识梳理,2.空间中平面与平面的位置关系,3.直线与直线平行(1)平行公理过直线外一点有且只有直线和这条直线平行(2)公理4平行于同一条直线的两条直线,又叫做空间平行线的传递性符号表示为.4直线与平面平行(1)直线和平面平行的判定定理如果平面外的一条直线和此平面内的一条直线平行,则该直线与此平面平行符号表示为,第37讲知识梳理,一条,ac,bcab,互相平行,(2)直线和平面平行的性质定理一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号表示为5平面与平面平行(1)两个平面平行的判定定理如果一个平面内有直线平行于另一个平面,那么这两个平面平行符号表示为,第37讲知识梳理,两条相交,推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行(2)两个平面平行的性质定理如果两个平行平面同时与第三个平面相交,那么它们的交线平行符号表示为(3)三个平面平行的性质两条直线被三个平行平面所截,截得的对应线段成比例,第37讲知识梳理,探究点1线面平行的证明,第37讲要点探究,例12009山东卷如图381所示,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,ABCD,AB2CD,E、E1、F分别是棱AD、AA1、AB的中点证明:直线EE1平面FCC1.,第37讲要点探究,【思路】本题可以转化为证明EE1平行于平面FCC1内的一条直线或证明平面A1ADD1与平面FCC1平行,第37讲要点探究,【解答】证法一:在直四棱柱ABCDA1B1C1D1中,取A1B1的中点F1,连接A1D,C1F1,CF1.因为AB2CD,且ABCD,所以CDA1F1,A1F1CD为平行四边形,所以CF1A1D.又因为E、E1分别是棱AD、AA1的中点,所以EE1A1D,所以CF1EE1,又因为F1C平面FCC1,所以直线EE1平面FCC1.,第37讲要点探究,证法二:由已知,DD1CC1,所以DD1平面FCC1.又ABCD,AB2CD,所以DCAF,所以四边形AFCD是平行四边形,所以ADFC,所以AD平面FCC1.又ADDD1D,所以平面A1ADD1平面FCC1.因为EE1平面A1ADD1,所以EE1平面FCC1.,第37讲要点探究,【点评】证明线面平行的方法主要有两种:利用线面平行的判断定理和面面平行的性质定理定理的条件的叙述要完整,同时也需根据不同特点的题选用不同方法关键是找到(或作出)平面内与已知直线平行的直线,常用平行四边形的对边平行(如本例)或三角形的中位线的性质(如变式题),还可以逆用线面平行的性质先推测出需要的直线,第37讲要点探究,变式题2008海南宁夏卷如图383所示,是一个长方体截去一个角所得多面体的直观图和它的正视图、侧视图(单位:cm)(1)按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连接BC,证明:BC面EFG.,第37讲要点探究,【思路】首先正确画出俯视图,求体积用相减的方法,然后用线面平行的判定定理证明,【解答】(1)俯视图如图384所示,第37讲要点探究,(2)所求多面体的体积VV长方体V正三棱锥446(cm3)(3)如图385所示,在长方体ABCDABCD中,连接AD,则ADBC.,第37讲要点探究,因为E,G分别为AA,AD的中点,所以ADEG,从而EGBC,又EG平面EFG,BC平面EFG,所以BC平面EFG.,探究点2面面平行的证明,第37讲要点探究,例2如图386所示,正四棱锥PABCD中,M、N、Q分别为PA、BD、AB上的点,且PMMABNNDBQQA58,求证:平面MNQ平面PBC.,第37讲要点探究,【思路】利用两平面平行的判定定理证明,【解答】PMMABQQA58,MQPB,MQ平面PBC.连接AN并延长交BC于E,连接PE.ADBC,ENNABNND58,ENNAPMMA,MNPE,MN平面PBC.MNMQM,PEPBP,MN平面MNQ,MQ平面MNQ,平面MNQ平面PBC.,第37讲要点探究,【点评】(1)面面平行与线面平行、线线平行之间可以相互转化(2)要证明两平面平行,只要在一个平面内找两相交直线与另一平面平行即可,第37讲要点探究,变式题已知P为ABC所在平面外一点,G1、G2、G3分别是PAB、PCB、PAC的重心(1)求证:平面G1G2G3平面ABC;(2)求SG1G2G3SABC.,【解答】(1)如图389所示,连接PG1、PG2、PG3并延长分别与边AB、BC、AC交于点D、E、F,连接DE、EF、FD.,第37讲要点探究,则有PG1PD23,PG2PE23,G1G2DE.又G1G2不在平面ABC内,G1G2平面ABC.同理G2G3平面ABC.又G1G2G2G3G2,平面G1G2G3平面ABC.,第37讲要点探究,(2)由(1)知,G1G2DE.又DEAC,G1G2AC.同理G2G3AB,G1G3BC.G1G2G3CAB,其相似比为13,SG1G2G3SABC19.,第37讲规律总结,1证明线面平行的常用方法有两个:(1)线面平行的判定定理;(2)利用面面平行的性质.2证明面面平行的常用方法主要是面面平行的判定定理,至于它的推论:两个平面同时和第三个平面平行则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海创意活动策划布置方案
- 微信群营销管理活动方案
- 移动暖气片的营销方案
- 单位红色故事活动方案策划
- 钢桁梁专项施工方案
- 金融展厅策划咨询方案
- 警务实战技能培训
- 文明卫生专项施工方案
- 建筑方案设计参数怎么写
- 线上购物节营销方案设计
- 2025年人教版高中物理必修3专项复习:电势差与电场强度的关系(解析版)
- 国有融资担保公司笔试真题解析
- 资金过账协议合同协议
- 急性敌草快中毒护理查房
- 物业房屋租赁合同模板
- 提高VTE护理措施落实率
- 动物药理课件
- 2022城市轨道交通列车驾驶员技能及素质要求第1部分:地铁、轻轨和单轨
- 蓝桥杯c语言历届试题及答案
- 金融风险管理习题第1-13章金融风险概述思考题-经济资本与风险调整绩效
- 2024-2025学年高一下学期时间管理主题班会课件
评论
0/150
提交评论